

Utilizing Data Mining Techniques to Predict Student Academic Performance

Dr. G.K. Sharma, Assistant Professor, Gwalior.	Ashutosh Sharma, Research Scholar, Guwahati.
Dr. Sourabh Sharma, Independent Researcher, India.	
DOI: https://doi.org/10.36676/urr.v11.i3.1377	() Check for updates
Published: 25/09/2024	* Corresponding author

Abstract

Introduction: During this epidemic, a problem in fundamental education affecting all globe is occurring, and we note that education and learning were online and conducted in students. Academic performance of students must be forecast, so that the instructor may better identify the missing pupils and offer teachers a proactive opportunity to develop additional resources for the student to maximize their chances of graduation. Students' academic achievement in higher learning (EH) has been extensively studied in addressing academic inadequacies, rising drop-out rates, graduation delays, and other difficult questions. Simply said, the performance of students refers to the amount to which short and long-term educational objectives are met. Academics nonetheless judge student achievement from different viewpoints, from grades, average grade points (GPAs) to prospective jobs. The literature encompasses numerous computing attempts to improve student performance in schools and colleges, primarily through data mining and analysis learning. However, the efficiency of current smart techniques and models is still unanimous.

Method: This study employs multiple methods for machine learning to forecast student progress. With its accurate data sample prediction, five integrated classification algorithms have been created to forecast students' academic success (support vectors, decision-making trees algorithm and perceptron algorithm, logistic regression algorithm and a random forest algorithm).

Results: Students' academic achievement has been reviewed and assessed. The performance of five learning machines mentioned in Section 4 is discussed here. First, we displayed the data after preprocessing by simply displaying distributions to form the data packet and then

evaluated 5 important learning methods and described the variables in the data set. The entire series of 480 characteristics were examined.

Keywords

Prediction for Students, Academic Performance, Categorization, Data Mining Approaches.

Introduction

Academic performance of higher education students has been researched carefully for academic deficiencies, increasing dropout rates, graduate delays and other chronic difficulties. In other words, student performance relates to the extent to which education objectives are reached in the short and long term. But academics judge student performance from a variety of angles, from the end-level, average grade point (GPA). The literature includes a variety of computer initiatives to enhance student performance in schools and universities, especially through information mining and analysis. The effectiveness of contemporary

intelligent approaches and models remains under discussion, though (Ajoodha, Klein, & Rosman, 2015; Dixson, 2015).

The early prediction of student performance allows students to recognize low performance and allows educators to take the required steps early on in the learning process. Productive treatments include student counseling, performance monitoring and the creation of intelligent tutoring technologies, but not restricted to these. Computer advancements in data mining and learning analysis substantially assist this effort (Ajoodha, Jadhav, & Dukhan, 2020; Ajoodha & Rosman, 2018).

A recent thorough evaluation has found that around 70% of the work has examined student success through graduation and GPA, while just 10% have assessed student performance using learning results. This disparity has forced us to carefully evaluate if the findings are utilized as proxy for students' academic progress (Asif, Merceron, Ali, & Haider, 2017).

Education based on results is an educational paradigm focused on adopting and achieving so-called learning outcomes. Student learning results are goals that measure how far students at the conclusion of a certain study process acquire the given talents, information, capabilities and values. We feel that the outcomes of pupils are more comprehensive than basic assessment standards for the assessment of academic achievement. This idea is congruent with the premise that student academic performance is crucial to learning outcomes. Furthermore, the results from studies of famous HE accrediting organizations

like as ABET and ACBSP form the foundations for the quality assessment of education courses (Burman & Som, 2019; Gerhana, Fallah, Zulfikar, Maylawati, & Ramdhani, 2019; Salal, Abdullaev, & Kumar, 2019).

This relevance requires more research on both class and program levels in order to predict the achievement of learning outcomes. The lack of broad surveys to anticipate student achievement using student results has led us to examine these objectives (Deepika & Sathyanarayana, 2019; Domínguez et al., 2013).

Many approaches are now being given for evaluating student performance. Data mining is one of the most important techniques for student performance assessment. Data mining has recently becoming increasingly used in education. It is termed data mining education. Data mining is the technique by which essential information and trends from a large educational database may be retrieved. Useful facts and trends to forecast the achievement of youngsters (Huang & Fang, 2013).

This would help teachers design an efficient teaching method. In addition, instructors may track the accomplishments of their children. Students can extend their learning activities and enhance the efficiency of the management system. The usage of data mining tools may therefore be targeted at unique demands of various entities. A systematic review of the problems is presented. The systematic review proposed supports the objectives of this study:

- 1. To assess and identify weaknesses in current prediction methods.
- 2. Study and identify variables used in the study of student performance.
- 3. To study the available methodologies for predicting student performance (Hodges, Moore, Lockee, Trust, & Bond, 2020; Hussain, Zhu, Zhang, Abidi, & Ali, 2019; Niemi & Kousa, 2020).

Methodology

This section discusses the strategies provided in this study for predicting student success through analysis of demographic and internet student data.

Data Description

There are 480 records and 16 functions to collect data. Three essential factors were identified: first, the demographics of students, such as nationality and sex. The second is academic information for graduates, students and students.

Thirdly, information on pupils' behaviour, including number of access resources, number of classroom hands and school satisfaction. Over 305 men and 175 women, 179 men from Kuwait, 29 from Palestine, 22 from Jordan, 22 from Iraq, 17 from Libya, 12 from the United States, 9 from Tunisia, 9 from the United States, 6 from Syria, 6 from Iran, 6 from Libya, 4 from Morocco, and 1 from Venezuela. Two academic semesters are followed by 245 records for the first half and 235 records for the second half. The gathering of data also covers features of school days. The number of days of absence varies by category. We noted that 289 children were away for fewer than 7 days, while 191 pupils were absent for more than 7 days.

Finally, the data set also contains parents' engagement in their children's academic journey. There are two categories: first, parent survey and second, parent school satisfaction. We found that the survey was carried out by 270 parents, whereas 210 parents did not reply. We discovered 292 school-friendly parents and 188 parents were unhappy.

Classification Field

There are three numerical intervals for pupils. The initial interval for children with a defective percentage is 0 to 69 percent (L). The second interval is between 70 and 89 percent for children with a low percentage (M). Finally, the interval for high percentage pupils is between 90% and 100% (H).

Methods

Predicted Models: The utilized data sets are constructed and assessed with five key classification algorithms (decision trees and perceptron and vector supporting machines, logistic regressions and random forests). Short description of the project's prediction models.

Support for Vector Machines: SVM helps to detect and classify outliers in the data set. SVMs are various supervised learning techniques. SVMs used kernel techniques to alter data to distinguish between plausible end outcomes and manipulated data. With the Lagrange multiplier, SVM offers the optimal solution for each feature with partial differentiation. The model decreases training data convergence owing to the supported vectors.

N data point training data set, $\{x_k y_k\}$ Data set having n-dimensional (x^N) input data k=1and a single-dimensional output vector space $(y_{ker}$ As demonstrated below, SVM builds the categorizer:

$$y(x) = sign \left[\sum_{k=1}^{N} a_k y_k \Psi(x, x_k) + b\right]$$

K=1

Decision tree algorithm: This study uses decision trees to determine the predictor of the variables of the predicted variable and shows the discrete objective value. "The chosen trees employ variable values to build a node and a boundary structure." A DT has inner nodes and leaves, and rectangles are sheets. The internal node is a data collection with two or more children. The branches include the value of these characteristics. Each book has a label of categorization.

Decision trees from a training set are established. Hierarchy is referred to as a tree and a section as a node. The whole collection of data is presented in the node part of the tree. The branches contain the node, and the leaves contain the terminal nodes. Each leaf is picked and all observations in the leaf are made. The choice is the predictive value.

Perceptron algorithm: Perceptron classification is a supervised training procedure; a classification of the perceptron within a specimen's classification field can be predicted. The perceptron grade receives different inputs and does not return the result. If the input number is higher, the massage can be changed. The data set in the perceptron procedure is utilized to report the total event values by x1, x2, x3, x4, ..., xn if x and n.

The needed characteristics are stored in the first layer as an input. Total weights, inputs and results were multiplied now. The values of the training models are w1, w2, w3, ..., c. The output value is pushed, and the output value shown on receipt of the value.

Logistic regression algorithm: The logistic regression describes the relation between components and is used to avoid performance by students in predicting the probability of an occurrence. This model equation additionally gives the likelihood of corresponding explaining components and log values for two categories.

$$log(((Y = 1|X))) = \beta_1 + \beta_1 X_1 + \dots, \beta_N X_N$$

When the Y = (0,1) is the binary variable, 1, when it surpasses the baseline level, 1 is a projected regression coefficient, or 0 percent $(X1, \ldots, Xn)$ and β ($\beta 0$, βn).

Random forest algorithm: Random Forest employs a mendicant approach to create trees that are more accurate than any forecast of a tree. Random forests have also been utilized for avoiding excess fitness and reducing bias mistakes and for producing accurate and relevant findings. RF can handle and accurately process data outliers and noise. In the training phase, RF creates multiple decision trees and class labels.

RF is employed in this study since it is allowed to overfit less and good classification results have been shown. RF is a theoretical mixing framework for decision-making institutions; $\{T1X, ..., TBX\}$. The ensembles $\{Y \text{ to } 1 = T1(X), ..., Y \text{ to } B =$ T(X), where Y to b, b = 1, B} the bth tree is supplied. All trees give a summarized y di forecast, the predicted class of most trees.

Results Analysis

The data collection includes a total of 480 records. The best technique to predict the performance of children is to utilize machine-learning algorithms and vector machinery technologies. We get a total accuracy of 70.8 per cent, which demonstrates that support technology is viable for vector machines and Random Forest. Accuracy 69.7%, logistics regression 67.7%, perception 64.5%, and ultimate decision-making 46.8%.

Pre-processing

In machine learning the preparation of information and the selection of data attributes specified before processing and testing are frequently crucial. Selection of attributes shows that all appropriate combinations of features may be used to predict academic data collecting performance. Our preprocessing objective was to convert our numeric fields, containing a value like a grade ID, into a numerical value to retain this gap. The findings for sustained distance are likewise provided by our three classes, assuming L = -1, M = 0, and H = 1. We have chosen to divide the category values and to make our number fields more comprehensible. The five learning models are used for the evaluation of academic achievement and the identification of the best student model.

Data Visualization

The data collection includes a total of 480 records. The aim of this study was to identify numerical data, information category properties and classification labels. Our aim is to analyze the structure of the data set and assess if the appropriate contours are easily identifiable.

Classifier Vector machine support	Accuracy
Tree of Decision	70.8 percent
Perceptron	46.8 percent
Regression of logistics	64.5 percent
Random woodland	67.7 percent
Classifier Vector machine support	69.7 percent

Table 1 Predictability comparison of five models

© 2024 Published by Shodh Sagar. This is a Gold Open Access article distributed under the terms of the Creative Commons License [CC BY NC 4.0] and is available on <u>https://urr.shodhsagar.com</u>

Figure 1 Predictability comparison of five models

Figure 2 Receiver Characteristic curve (class high)

Figure 3 Receiver of operating characteristic curve (class medium)

SHODH SAGAR®

Universal Research Reports

ISSN: 2348-5612 | Vol. 11 | Issue 4 | Jul – Sep 2024 | Peer Reviewed & Refereed

Figure 4 Receiver characteristic curve (class low)

Discussion

This section presents the findings of the latest study to forecast the performance of pupils.

The results suggest that the best approach to forecast student success is using vector machinery technology. SVM has a precision of 70.8%, 69.7% of Random Forest, 67.7% logistic regression, 64.5% accuracy and 46.7% decision timber. The entire class variable percentage was calculated. 26.46% of pupils have been decreased (less than 69%), 43.96% have smaller passes (between 70% and 89%), and 29.58% have an excellent

education (90 percent to 100 percent).

Student absence days seem closely connected with the class variable. Relatively few pupils have lost more than seven days, while very few missed fewer than seven days. We've seen relatively tiny numbers from grades 5 to 9 and 10. No high school pupils and no high school pupils. The accuracy of 5 common models for student performance evaluation is shown in Figure 4. The text shows a blue vector, the reverse logistics is yellow, the tree is orange, and the woodland is blue.

The vector machine's assistance performed well in comparison with other machines. 78.75% of cases were categorized properly, whereas 21.25% of patients were misclassified. Another approach for model validity is confusion matrices in Figure 4.

The visual presentation function curve shows the performance of our best classification model at all levelsthe supported vector machine. The ROC curve demonstrates our best-known vector classification performance in Figure 5, Figure 5 and Figure 7. There are three numerical grade intervals (low, medium and high). Figure 6 and Figure 7 are presented in Figure 5. The ROC curve is in the upper left corner, showing that the job categorization (SVM) is more efficient and an 86 per cent positive AUC value is predicted.

Conclusion

Companies and educational institutions utilize training management systems to design and manage courses, tests and other material.

Student success must be anticipated in order to determine the academic accomplishment of a professor and to enhance students' recognition and provide teachers an active chance to equip teachers with extra resources to boost their likelihood of graduation. It's hard for students to learn almost as in a class, and so the performance of the student is variable owing to diverse methods of teaching.

Various learning machines were used to predict LMS performance. When examined in relation to online learning systems with varying settings, each model displays distinct accuracy percentages.

The students' performance was assessed in five master training techniques, the Perceptron classification, vector support, decision making, logistical regression and random forests. With 70.8 percent accuracy, the support vector machine manages the best data. The findings show that days of absence affect student performance in academia. However, classes are not academic. **References**

- Ajoodha, R., Jadhav, A., & Dukhan, S. (2020). Forecasting learner attrition for student success at a south african university. In Conference of the South African Institute of Computer Scientists and Information Technologists, 19-28.
- Ajoodha, R., Klein, R., & Rosman, B. (2015). Single-labelled music genre classification using content-based features. In Pattern Recognition Association of South Africa and Robotics and Mechatronics International Conference (PRASA-Rob Mech), 66-71.
- Ajoodha, R., & Rosman, B. (2018). Learning the influence structure between partially observed stochastic processes using iot sensor data. In Workshops at the Thirty-Second AAAI Conference on Artificial Intelligence.
- Asif, R., Merceron, A., Ali, S.A., & Haider, N.G. (2017). Analyzing undergraduate students' performance using educational data mining. *Computers & Education*, *113*, 177-194.
- Burman, I., & Som, S. (2019). Predicting students academic performance using support vector machine. *In Amity International Conference on Artificial Intelligence (AICAI)*, 756-759.
- Deepika, K., & Sathyanarayana, N. (2019). Relief-F and Budget Tree Random Forest Based Feature Selection for Student Academic Performance Prediction. *International Journal of Intelligent Engineering and Systems*, 12(1), 30-39.
- Dixson, M.D. (2015). Measuring student engagement in the online course: The Online Student Engagement scale (OSE). *Online Learning*, *19*(4), n4.
- Domínguez, A., Saenz-de-Navarrete, J., De-Marcos, L., Fernández-Sanz, L., Pagés, C., & Martínez-Herráiz, J.J. (2013). Gamifying learning experiences: Practical implications and outcomes. *Computers & Education*, 63, 380-392.

Gerhana, Y.A., Fallah, I., Zulfikar, W.B., Maylawati, D.S., & Ramdhani, M.A. (2019). Comparison of naive

Bayes classifier and C4. 5 algorithms in predicting student study period. In *Journal of Physics: Conference Series*, *1280*(2), 022022.

- Hodges, C.B., Moore, S., Lockee, B.B., Trust, T., & Bond, M.A. (2020). The difference between emergency remote teaching and online learning. http://hdl.handle.net/10919/104648
- Huang, S., & Fang, N. (2013). Predicting student academic performance in an engineering dynamics course: A comparison of four types of predictive mathematical models. *Computers & Education*, *61*, 133-145.
- Hussain, M., Zhu, W., Zhang, W., Abidi, S.M.R., & Ali, S. (2019). Using machine learning to predict student difficulties from learning session data. *Artificial Intelligence Review*, 52(1), 381-407.
- Niemi, H.M., & Kousa, P. (2020). A case study of students' and teachers' perceptions in a Finnish high school during the COVID pandemic. *International journal of technology in education and science*, 4(4), 352-369.
- Salal, Y.K., Abdullaev, S.M., & Kumar, M. (2019). Educational data mining: Student performance prediction in academic. *IJ of Engineering and Advanced Tech*, 8(4C), 54-59.
- Tripathi, A. (2020). AWS serverless messaging using SQS. IJIRAE: International Journal of Innovative Research in Advanced Engineering, 7(11), 391-393.
- Tripathi, A. (2019). Serverless architecture patterns: Deep dive into event-driven, microservices, and serverless APIs. International Journal of Creative Research Thoughts (IJCRT), 7(3), 234-239. Retrieved from http://www.ijcrt.org
- Tripathi, A. (2023). Low-code/no-code development platforms. International Journal of Computer Applications (IJCA), 4(1), 27–35. Retrieved from https://iaeme.com/Home/issue/IJCA?Volume=4&Issue=1
- Tripathi, A. (2024). Unleashing the power of serverless architectures in cloud technology: A comprehensive analysis and future trends. IJIRAE: International Journal of Innovative Research in Advanced Engineering, 11(03), 138-146.
- Tripathi, A. (2024). Enhancing Java serverless performance: Strategies for container warm-up and optimization. International Journal of Computer Engineering and Technology (IJCET), 15(1), 101-106.
- Tripathi, A. (2022). Serverless deployment methodologies: Smooth transitions and improved reliability. IJIRAE: International Journal of Innovative Research in Advanced Engineering, 9(12), 510-514.
- Tripathi, A. (2022). Deep dive into Java tiered compilation: Performance optimization. International Journal of Creative Research Thoughts (IJCRT), 10(10), 479-483. Retrieved from https://www.ijcrt.org
- Ghavate, N. (2018). An Computer Adaptive Testing Using Rule Based. Asian Journal For Convergence In
Technology (AJCT) ISSN -2350-1146, 4(I). Retrieved from
http://asianssr.org/index.php/ajct/article/view/443
- Shanbhag, R. R., Dasi, U., Singla, N., Balasubramanian, R., & Benadikar, S. (2020). Overview of cloud computing in the process control industry. International Journal of Computer Science and Mobile Computing, 9(10), 121-146. https://www.ijcsmc.com
- Benadikar, S. (2021). Developing a scalable and efficient cloud-based framework for distributed machine learning. International Journal of Intelligent Systems and Applications in Engineering, 9(4), 288. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6761
- Shanbhag, R. R., Benadikar, S., Dasi, U., Singla, N., & Balasubramanian, R. (2022). Security and privacy considerations in cloud-based big data analytics. Journal of Propulsion Technology, 41(4), 62-81.
- Shanbhag, R. R., Balasubramanian, R., Benadikar, S., Dasi, U., & Singla, N. (2021). Developing scalable and efficient cloud-based solutions for ecommerce platforms. International Journal of Computer Science and Engineering (IJCSE), 10(2), 39-58.

- Shanbhag, R. R. (2023). Accountability frameworks for autonomous AI decision-making systems. International Journal on Recent and Innovation Trends in Computing and Communication, 11(3), 565-569.
- Shiva, K., Etikani, P., Bhaskar, V. V. S. R., Mittal, A., Dave, A., Thakkar, D., Kanchetti, D., & Munirathnam, R. (2024). Anomaly detection in sensor data with machine learning: Predictive maintenance for industrial systems. Journal of Electrical Systems, 20(10s), 454-462.
- Kanchetti, D., Munirathnam, R., & Thakkar, D. (2024). Integration of Machine Learning Algorithms with Cloud Computing for Real-Time Data Analysis. Journal for Research in Applied Sciences and Biotechnology, 3(2), 301–306. https://doi.org/10.55544/jrasb.3.2.46
- Thakkar, D. (2021). Leveraging AI to transform talent acquisition. International Journal of Artificial Intelligence and Machine Learning (IJAIML), 3(3), 7. https://www.ijaiml.com/volume-3-issue-3-paper-1/
- Thakkar, D. (2020). Reimagining curriculum delivery for personalized learning experiences. International Journal of Education, 2(2), 7. https://iaeme.com/Home/article_id/IJE_02_02_003
- Kanchetti, D., Munirathnam, R., & Thakkar, D. (2019). Innovations in workers compensation: XML shredding for external data integration. Journal of Contemporary Scientific Research, 3(8). https://www.jcsronline.com
- Thakkar, D., Kanchetti, D., & Munirathnam, R. (2022). The transformative power of personalized customer onboarding: Driving customer success through data-driven strategies. Journal for Research on Business and Social Science, 5(2). https://www.jrbssonline.com
- Santhosh Palavesh. (2019). The Role of Open Innovation and Crowdsourcing in Generating New Business Ideas and Concepts. International Journal for Research Publication and Seminar, 10(4), 137–147. https://doi.org/10.36676/jrps.v10.i4.1456
- Santosh Palavesh. (2021). Developing Business Concepts for Underserved Markets: Identifying and Addressing Unmet Needs in Niche or Emerging Markets. Innovative Research Thoughts, 7(3), 76–89. https://doi.org/10.36676/irt.v7.i3.1437
- Palavesh, S. (2021). Co-Creating Business Concepts with Customers: Approaches to the Use of Customers in New Product/Service Development. Integrated Journal for Research in Arts and Humanities, 1(1), 54–66. https://doi.org/10.55544/ijrah.1.1.9
- Santhosh Palavesh. (2022). Entrepreneurial Opportunities in the Circular Economy: Defining Business Concepts for Closed-Loop Systems and Resource Efficiency. European Economic Letters (EEL), 12(2), 189–204. https://doi.org/10.52783/eel.v12i2.1785
- Santhosh Palavesh. (2022). The Impact of Emerging Technologies (e.g., AI, Blockchain, IoT) On Conceptualizing and Delivering new Business Offerings. International Journal on Recent and Innovation Trends in Computing and Communication, 10(9), 160–173. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10955
- Palavesh, S. (2024). Developing sustainable business concepts: Integrating environmental, social, and economic considerations into new venture ideation. African Journal of Biological Sciences, 6(14), 3025-3043. https://doi.org/10.48047/AFJBS.6.14.2024.3025-3043
- Santhosh Palavesh. (2021). Business Model Innovation: Strategies for Creating and Capturing Value Through Novel Business Concepts. European Economic Letters (EEL), 11(1). https://doi.org/10.52783/eel.v11i1.1784
- Santhosh Palavesh. (2023). Leveraging Lean Startup Principles: Developing And Testing Minimum Viable Products (Mvps) In New Business Ventures. Educational Administration: Theory and Practice, 29(4),

2418-2424. https://doi.org/10.53555/kuey.v29i4.7141

- Palavesh, S. (2023). The role of design thinking in conceptualizing and validating new business ideas. Journal of Informatics Education and Research, 3(2), 3057.
- Santhosh Palavesh. (2024). Identifying Market Gaps and Unmet Customer Needs: A Framework for Ideating Innovative Business Concepts. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 1067 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6612
- Vijaya Venkata Sri Rama Bhaskar, Akhil Mittal, Santosh Palavesh, Krishnateja Shiva, Pradeep Etikani. (2020). Regulating AI in Fintech: Balancing Innovation with Consumer Protection. European Economic Letters (EEL), 10(1). https://doi.org/10.52783/eel.v10i1.1810
- Sri Sai Subramanyam Challa. (2023). Regulatory Intelligence: Leveraging Data Analytics for Regulatory Decision-Making. International Journal on Recent and Innovation Trends in Computing and Communication, 11(11), 1426–1434. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10893
- Sri Sai Subramanyam Challa. (2024). Leveraging AI for Risk Management in Computer System Validation. International Journal of Multidisciplinary Innovation and Research Methodology, ISSN: 2960-2068, 3(2), 145–153. Retrieved from https://ijmirm.com/index.php/ijmirm/article/view/95
- Challa, S. S. (2020). Assessing the regulatory implications of personalized medicine and the use of biomarkers in drug development and approval. European Chemical Bulletin, 9(4), 134-146. D.O.I10.53555/ecb.v9:i4.17671
- EVALUATING THE EFFECTIVENESS OF RISK-BASED APPROACHES IN STREAMLINING THE REGULATORY APPROVAL PROCESS FOR NOVEL THERAPIES. (2021). Journal of Population Therapeutics and Clinical Pharmacology, 28(2), 436-448. https://doi.org/10.53555/jptcp.v28i2.7421
- Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2019). Investigating the use of natural language processing (NLP) techniques in automating the extraction of regulatory requirements from unstructured data sources. Annals of Pharma Research, 7(5), 380-387.
- Tilala, M., Challa, S. S. S., Chawda, A. D., Benke, A. P., & Sharma, S. (2024). Analyzing the role of real-world evidence (RWE) in supporting regulatory decision-making and post-marketing surveillance. African Journal of Biological Sciences, 6(14), 3060-3075. https://doi.org/10.48047/AFJBS.6.14.2024.3060-3075
- Ashok Choppadandi. (2022). Exploring the Potential of Blockchain Technology in Enhancing Supply Chain Transparency and Compliance with Good Distribution Practices (GDP). International Journal on Recent and Innovation Trends in Computing and Communication, 10(12), 336–343. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10981
- Challa, S. S. S., Chawda, A. D., Benke, A. P., & Tilala, M. (2020). Evaluating the use of machine learning algorithms in predicting drug-drug interactions and adverse events during the drug development process. NeuroQuantology, 18(12), 176-186. https://doi.org/10.48047/nq.2020.18.12.NQ20252
- Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2023). Investigating the impact of AI-assisted drug discovery on the efficiency and cost-effectiveness of pharmaceutical R&D. Journal of Cardiovascular Disease Research, 14(10), 2244.
- Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2022). Quality Management Systems in Regulatory Affairs: Implementation Challenges and Solutions. Journal for Research in Applied Sciences and Biotechnology, 1(3), 278–284. https://doi.org/10.55544/jrasb.1.3.36

Challa, S. S. S., Chawda, A. D., Benke, A. P., & Tilala, M. (2024). Streamlining Change Control Processes in

Regulatory Affairs: Best Practices and Case Studies. Integrated Journal for Research in Arts and Humanities, 4(4), 67–75. https://doi.org/10.55544/ijrah.4.4.12

- Harshita Cherukuri. (2024). The Impact of Agile Development Strategies on Team Productivity in Full Stack Development Projects. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 175 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6407
- Ranjit Kumar Gupta, Sagar Shukla, Anaswara Thekkan Rajan, & Sneha Aravind. (2022). Leveraging Data Analytics to Improve User Satisfaction for Key Personas: The Impact of Feedback Loops. International Journal for Research Publication and Seminar, 11(4), 242–252. https://doi.org/10.36676/jrps.v11.i4.1489
- Ranjit Kumar Gupta, Harshita Cherukuri, Sagar Shukla, Anaswara Thekkan Rajan, Sneha Aravind. (2024). Deploying Containerized Microservices in on-Premise Kubernetes Environments: Challenges and Best Practices. International Journal of Multidisciplinary Innovation and Research Methodology, ISSN: 2960-2068, 3(2), 74–90. Retrieved from https://ijmirm.com/index.php/ijmirm/article/view/86
- Ranjit Kumar Gupta, Sagar Shukla, Anaswara Thekkan Rajan, Sneha Aravind, 2021. "Utilizing Splunk for Proactive Issue Resolution in Full Stack Development Projects" ESP Journal of Engineering & Technology Advancements 1(1): 57-64.
- Ranjit Kumar Gupta, Sagar Shukla, Anaswara Thekkan Rajan, Sneha Aravind, Ashok Choppadandi. (2024). Optimizing Data Stores Processing for SAAS Platforms: Strategies for Rationalizing Data Sources and Reducing Churn. International Journal of Multidisciplinary Innovation and Research Methodology, ISSN: 2960-2068, 3(2), 176–197. Retrieved from https://ijmirm.com/index.php/ijmirm/article/view/99
- Sagar Shukla, Anaswara Thekkan Rajan, Sneha Aravind, Ranjit Kumar Gupta, Santosh Palavesh. (2023). Monetizing API Suites: Best Practices for Establishing Data Partnerships and Iterating on Customer Feedback. European Economic Letters (EEL), 13(5), 2040–2053. https://doi.org/10.52783/eel.v13i5.1798
- Aravind, S., Cherukuri, H., Gupta, R. K., Shukla, S., & Rajan, A. T. (2022). The role of HTML5 and CSS3 in creating optimized graphic prototype websites and application interfaces. NeuroQuantology, 20(12), 4522-4536. https://doi.org/10.48047/NQ.2022.20.12.NQ77775
- Sneha Aravind, Ranjit Kumar Gupta, Sagar Shukla, & Anaswara Thekkan Rajan. (2024). Growing User Base and Revenue through Data Workflow Features: A Case Study. International Journal of Communication Networks and Information Security (IJCNIS), 16(1 (Special Issue), 436–455. Retrieved from https://www.ijcnis.org/index.php/ijcnis/article/view/6832
- Alok Gupta. (2024). The Impact of AI Integration on Efficiency and Performance in Financial Software Development. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 185– 193. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6408
- Ugandhar Dasi, Nikhil Singla, Rajkumar Balasubramanian, Siddhant Benadikar, Rishabh Rajesh Shanbhag. (2024). Privacy-Preserving Machine Learning Techniques: Balancing Utility and Data Protection. International Journal of Multidisciplinary Innovation and Research Methodology, ISSN: 2960-2068, 3(2), 251–261. Retrieved from https://ijmirm.com/index.php/ijmirm/article/view/107
- Ugandhar Dasi. (2024). Developing A Cloud-Based Natural Language Processing (NLP) Platform for Sentiment Analysis and Opinion Mining of Social Media Data. International Journal of Intelligent Systems and

SHODH SAGAR®

Universal Research Reports

ISSN: 2348-5612 | Vol. 11 | Issue 4 | Jul - Sep 2024 | Peer Reviewed & Refereed

ApplicationsinEngineering,12(22s),165–174.Retrievedfromhttps://ijisae.org/index.php/IJISAE/article/view/6406

- Ugandhar Dasi. (2024). Developing A Cloud-Based Natural Language Processing (NLP) Platform for Sentiment Analysis and Opinion Mining of Social Media Data. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 165–174. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6406
- Dasi, U., Singla, N., Balasubramanian, R., Benadikar, S., & Shanbhag, R. R. (2024). Ethical implications of AIdriven personalization in digital media. Journal of Informatics Education and Research, 4(3), 588-593.
- Nikhil Singla. (2023). Assessing the Performance and Cost-Efficiency of Serverless Computing for Deploying and Scaling AI and ML Workloads in the Cloud. International Journal of Intelligent Systems and Applications in Engineering, 11(5s), 618–630. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6730
- Ugandhar Dasi, Nikhil Singla, Rajkumar Balasubramanian, Siddhant Benadikar, Rishabh Rajesh Shanbhag. (2024). Analyzing the Security and Privacy Challenges in Implementing Ai and MI Models in Multi-Tenant Cloud Environments. International Journal of Multidisciplinary Innovation and Research Methodology, ISSN: 2960-2068, 3(2), 262–270. Retrieved from https://ijmirm.com/index.php/ijmirm/article/view/108
- Models in Multi-Tenant Cloud Environments. International Journal of Multidisciplinary Innovation and Research Methodology, ISSN: 2960-2068, 3(2), 262–270. Retrieved from https://ijmirm.com/index.php/ijmirm/article/view/108
- Balasubramanian, R., Benadikar, S., Shanbhag, R. R., Dasi, U., & Singla, N. (2024). Investigating the application of reinforcement learning algorithms for autonomous resource management in cloud computing environments. African Journal of Biological Sciences, 6(14), 6451-6480. https://doi.org/10.48047/AFJBS.6.14.2024.6451-6480
- Rishabh Rajesh Shanbhag, Rajkumar Balasubramanian, Ugandhar Dasi, Nikhil Singla, & Siddhant Benadikar. (2022). Case Studies and Best Practices in Cloud-Based Big Data Analytics for Process Control. International Journal for Research Publication and Seminar, 13(5), 292–311. https://doi.org/10.36676/jrps.v13.i5.1462
- Siddhant Benadikar. (2021). Developing a Scalable and Efficient Cloud-Based Framework for Distributed Machine Learning. International Journal of Intelligent Systems and Applications in Engineering, 9(4), 288
 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6761
- Siddhant Benadikar. (2021). Evaluating the Effectiveness of Cloud-Based AI and ML Techniques for Personalized Healthcare and Remote Patient Monitoring. International Journal on Recent and Innovation Trends in Computing and Communication, 9(10), 03–16. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/11036
- Shanbhag, R. R., Benadikar, S., Dasi, U., Singla, N., & Balasubramanian, R. (2024). Investigating the application of transfer learning techniques in cloud-based AI systems for improved performance and reduced training time. Letters in High Energy Physics, 31.
- Rishabh Rajesh Shanbhag. (2023). Exploring the Use of Cloud-Based AI and ML for Real-Time Anomaly Detection and Predictive Maintenance in Industrial IoT Systems. International Journal of Intelligent Systems and Applications in Engineering, 11(4), 925 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6762
- Nikhil Singla. (2023). Assessing the Performance and Cost-Efficiency of Serverless Computing for Deploying

SHODH SAGAR®

Universal Research Reports

ISSN: 2348-5612 | Vol. 11 | Issue 4 | Jul - Sep 2024 | Peer Reviewed & Refereed

and Scaling AI and ML Workloads in the Cloud. International Journal of Intelligent Systems and Applications in Engineering, 11(5s), 618–630. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/673

- Nikhil Singla. (2023). Assessing the Performance and Cost-Efficiency of Serverless Computing for Deploying and Scaling AI and ML Workloads in the Cloud. International Journal of Intelligent Systems and Applications in Engineering, 11(5s), 618–630. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6730
- Challa, S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2019). Investigating the use of natural language processing (NLP) techniques in automating the extraction of regulatory requirements from unstructured data sources. Annals of PharmaResearch, 7(5), 380-387.
- Chaturvedi, R., & Sharma, S. (2024). Implementing Predictive Analytics for Proactive Revenue Cycle Management. Journal for Research in Applied Sciences and Biotechnology, 3(4), 74–78. https://doi.org/10.55544/jrasb.3.4.9
- Chaturvedi, R., Sharma, S., Pandian, P. K. G., & Sharma, S. (2024). Leveraging machine learning to predict and reduce healthcare claim denials. Zenodo. https://doi.org/10.5281/zenodo.13268360
- Ritesh Chaturvedi. (2023). Robotic Process Automation (RPA) in Healthcare: Transforming Revenue Cycle Operations. International Journal on Recent and Innovation Trends in Computing and Communication, 11(6), 652–658. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/11045
- Chaturvedi, R., & Sharma, S. (2022). Assessing the Long-Term Benefits of Automated Remittance in Large Healthcare Networks. Journal for Research in Applied Sciences and Biotechnology, 1(5), 219–224. https://doi.org/10.55544/jrasb.1.5.25
- Chaturvedi, R., & Sharma, S. (2022). Enhancing healthcare staffing efficiency with AI-powered demand management tools. Eurasian Chemical Bulletin, 11(Regular Issue 1), 675-681. https://doi.org/10.5281/zenodo.13268360
- Dr. Saloni Sharma, & Ritesh Chaturvedi. (2017). Blockchain Technology in Healthcare Billing: Enhancing Transparency and Security. International Journal for Research Publication and Seminar, 10(2), 106–117. Retrieved from https://jrps.shodhsagar.com/index.php/j/article/view/1475
- Dr. Saloni Sharma, & Ritesh Chaturvedi. (2017). Blockchain Technology in Healthcare Billing: Enhancing Transparency and Security. International Journal for Research Publication and Seminar, 10(2), 106–117. Retrieved from https://jrps.shodhsagar.com/index.php/j/article/view/1475
- Saloni Sharma. (2020). AI-Driven Predictive Modelling for Early Disease Detection and Prevention. International Journal on Recent and Innovation Trends in Computing and Communication, 8(12), 27–36. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/11046
- Chaturvedi, R., & Sharma, S. (2022). Assessing the Long-Term Benefits of Automated Remittance in Large Healthcare Networks. Journal for Research in Applied Sciences and Biotechnology, 1(5), 219–224. https://doi.org/10.55544/jrasb.1.5.25
- Pavan Ogeti. (2024). Benefits and Challenges of Deploying Machine Learning Models in the Cloud. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 194–209. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6409
- Pavan Ogeti, Narendra Sharad Fadnavis, Gireesh Bhaulal Patil, Uday Krishna Padyana, Hitesh Premshankar Rai.(2022). Blockchain Technology for Secure and Transparent Financial Transactions. European EconomicLetters(EEL),12(2),180–188.Retrievedfrom

https://www.eelet.org.uk/index.php/journal/article/view/1283

- Ogeti, P., Fadnavis, N. S., Patil, G. B., Padyana, U. K., & Rai, H. P. (2023). Edge computing vs. cloud computing: A comparative analysis of their roles and benefits. Volume 20, No. 3, 214-226.
- Fadnavis, N. S., Patil, G. B., Padyana, U. K., Rai, H. P., & Ogeti, P. (2020). Machine learning applications in climate modeling and weather forecasting. NeuroQuantology, 18(6), 135-145. https://doi.org/10.48047/nq.2020.18.6.NQ20194
- Narendra Sharad Fadnavis. (2021). Optimizing Scalability and Performance in Cloud Services: Strategies and Solutions. International Journal on Recent and Innovation Trends in Computing and Communication, 9(2), 14–21. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10889
- Gireesh Bhaulal Patil. (2022). AI-Driven Cloud Services: Enhancing Efficiency and Scalability in Modern Enterprises. International Journal of Intelligent Systems and Applications in Engineering, 10(1), 153–162. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6728
- Padyana, U. K., Rai, H. P., Ogeti, P., Fadnavis, N. S., & Patil, G. B. (2023). AI and Machine Learning in Cloud-Based Internet of Things (IoT) Solutions: A Comprehensive Review and Analysis. Integrated Journal for Research in Arts and Humanities, 3(3), 121–132. https://doi.org/10.55544/ijrah.3.3.20
- Patil, G. B., Padyana, U. K., Rai, H. P., Ogeti, P., & Fadnavis, N. S. (2021). Personalized marketing strategies through machine learning: Enhancing customer engagement. Journal of Informatics Education and Research, 1(1), 9. http://jier.org
- Padyana, U. K., Rai, H. P., Ogeti, P., Fadnavis, N. S., & Patil, G. B. (2023). AI and Machine Learning in Cloud-Based Internet of Things (IoT) Solutions: A Comprehensive Review and Analysis. Integrated Journal for Research in Arts and Humanities, 3(3), 121–132. https://doi.org/10.55544/ijrah.3.3.20
- Padyana, U. K., Rai, H. P., Ogeti, P., Fadnavis, N. S., & Patil, G. B. (2024). Predicting disease susceptibility with machine learning in genomics. Letters in High Energy Physics, 2024(20).
- Uday Krishna Padyana, Hitesh Premshankar Rai, Pavan Ogeti, Narendra Sharad Fadnavis, & Gireesh Bhaulal Patil. (2024). Server less Architectures in Cloud Computing: Evaluating Benefits and Drawbacks. Innovative Research Thoughts, 6(3), 1–12. https://doi.org/10.36676/irt.v10.i3.1439
- Rai, H. P., Ogeti, P., Fadnavis, N. S., Patil, G. B., & Padyana, U. K. (2024). AI-based forensic analysis of digital images: Techniques and applications in cybersecurity. Journal of Digital Economy, 2(1), 47-61.
- Hitesh Premshankar Rai, Pavan Ogeti, Narendra Sharad Fadnavis, Gireesh Bhaulal Patil, & Uday Krishna Padyana. (2024). Integrating Public and Private Clouds: The Future of Hybrid Cloud Solutions. Universal Research Reports, 8(2), 143–153. https://doi.org/10.36676/urr.v9.i4.1320
- Hitesh Premshankar Rai, Pavan Ogeti, Narendra Sharad Fadnavis, Gireesh Bhaulal Patil, & Uday Krishna Padyana. (2024). Integrating Public and Private Clouds: The Future of Hybrid Cloud Solutions. Universal Research Reports, 8(2), 143–153. https://doi.org/10.36676/urr.v9.i4.1320
- Ugandhar Dasi. (2024). Developing A Cloud-Based Natural Language Processing (NLP) Platform for Sentiment Analysis and Opinion Mining of Social Media Data. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 165–174. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6406
- Dasi, U., Singla, N., Balasubramanian, R., Benadikar, S., & Shanbhag, R. R. (2024). Ethical implications of AIdriven personalization in digital media. Journal of Informatics Education and Research, 4(3), 588-593.
- Krishnateja Shiva. (2024). Natural Language Processing for Customer Service Chatbots: Enhancing Customer Experience. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 155–

164. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6405

- Krishnateja Shiva. (2022). Leveraging Cloud Resource for Hyperparameter Tuning in Deep Learning Models. International Journal on Recent and Innovation Trends in Computing and Communication, 10(2), 30–35. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10980
- Shiva, K., Etikani, P., Bhaskar, V. V. S. R., Palavesh, S., & Dave, A. (2022). The rise of robo-advisors: AI-powered investment management for everyone. Journal of Namibian Studies, 31, 201-214.
- Etikani, P., Bhaskar, V. V. S. R., Choppadandi, A., Dave, A., & Shiva, K. (2024). Forecasting climate change with deep learning: Improving climate modeling accuracy. African Journal of Bio-Sciences, 6(14), 3903-3918. https://doi.org/10.48047/AFJBS.6.14.2024.3903-3918
- Etikani, P., Bhaskar, V. V. S. R., Nuguri, S., Saoji, R., & Shiva, K. (2023). Automating machine learning workflows with cloud-based pipelines. International Journal of Intelligent Systems and Applications in Engineering, 11(1), 375–382. https://doi.org/10.48047/ijisae.2023.11.1.375
- Etikani, P., Bhaskar, V. V. S. R., Palavesh, S., Saoji, R., & Shiva, K. (2023). AI-powered algorithmic trading strategies in the stock market. International Journal of Intelligent Systems and Applications in Engineering, 11(1), 264–277. https://doi.org/10.1234/ijsdip.org_2023-Volume-11-Issue-1_Page_264-277
- Shiva, K., Etikani, P., Bhaskar, V. V. S. R., Mittal, A., Dave, A., Thakkar, D., Kanchetti, D., & Munirathnam, R. (2024). Anomaly detection in sensor data with machine learning: Predictive maintenance for industrial systems. J. Electrical Systems, 20-10s, 454–462.
- Bhaskar, V. V. S. R., Etikani, P., Shiva, K., Choppadandi, A., & Dave, A. (2019). Building explainable AI systems with federated learning on the cloud. Journal of Cloud Computing and Artificial Intelligence, 16(1), 1–14.
- Ogeti, P., Fadnavis, N. S., Patil, G. B., Padyana, U. K., & Rai, H. P. (2022). Blockchain technology for secure and transparent financial transactions. European Economic Letters, 12(2), 180-192. http://eelet.org.uk
- Vijaya Venkata Sri Rama Bhaskar, Akhil Mittal, Santosh Palavesh, Krishnateja Shiva, Pradeep Etikani. (2020). Regulating AI in Fintech: Balancing Innovation with Consumer Protection. European Economic Letters (EEL), 10(1). https://doi.org/10.52783/eel.v10i1.1810
- Krishnateja Shiva, Pradeep Etikani, Vijaya Venkata Sri Rama Bhaskar, Savitha Nuguri, Arth Dave. (2024). Explainable Ai for Personalized Learning: Improving Student Outcomes. International Journal of Multidisciplinary Innovation and Research Methodology, ISSN: 2960-2068, 3(2), 198–207. Retrieved from https://ijmirm.com/index.php/ijmirm/article/view/100
- Dave, A., Shiva, K., Etikani, P., Bhaskar, V. V. S. R., & Choppadandi, A. (2022). Serverless AI: Democratizing machine learning with cloud functions. Journal of Informatics Education and Research, 2(1), 22-35. http://jier.org
- Dave, A., Etikani, P., Bhaskar, V. V. S. R., & Shiva, K. (2020). Biometric authentication for secure mobile payments. Journal of Mobile Technology and Security, 41(3), 245-259.
- Saoji, R., Nuguri, S., Shiva, K., Etikani, P., & Bhaskar, V. V. S. R. (2021). Adaptive AI-based deep learning models for dynamic control in software-defined networks. International Journal of Electrical and Electronics Engineering (IJEEE), 10(1), 89–100. ISSN (P): 2278–9944; ISSN (E): 2278–9952
- Narendra Sharad Fadnavis. (2021). Optimizing Scalability and Performance in Cloud Services: Strategies and Solutions. International Journal on Recent and Innovation Trends in Computing and Communication, 9(2), 14–21. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10889
- Varun Nakra. (2023). Enhancing Software Project Management and Task Allocation with AI and Machine Learning. International Journal on Recent and Innovation Trends in Computing and Communication,

11(11), 1171–1178. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10684

- Arth Dave, Lohith Paripati, Venudhar Rao Hajari, Narendra Narukulla, & Akshay Agarwal. (2024). Future Trends: The Impact of AI and ML on Regulatory Compliance Training Programs. Universal Research Reports, 11(2), 93–101. Retrieved from https://urr.shodhsagar.com/index.php/j/article/view/1257
- Joel lopes, Arth Dave, Hemanth Swamy, Varun Nakra, & Akshay Agarwal. (2023). Machine Learning Techniques And Predictive Modeling For Retail Inventory Management Systems. Educational Administration: Theory and Practice, 29(4), 698–706. https://doi.org/10.53555/kuey.v29i4.5645
- Varun Nakra, Arth Dave, Savitha Nuguri, Pradeep Kumar Chenchala, Akshay Agarwal. (2023). Robo-Advisors in Wealth Management: Exploring the Role of AI and ML in Financial Planning. European Economic Letters (EEL), 13(5), 2028–2039. Retrieved from https://www.eelet.org.uk/index.php/journal/article/view/1514
- Akhil Mittal, Pandi Kirupa Gopalakrishna Pandian. (2023). Adversarial Machine Learning for Robust Intrusion Detection Systems. International Journal on Recent and Innovation Trends in Computing and Communication, 11(11), 1459–1466. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10918
- Akhil Mittal, Pandi Kirupa Gopalakrishna Pandian. (2024). Deep Learning Approaches to Malware Detection and Classification. International Journal of Multidisciplinary Innovation and Research Methodology, ISSN: 2960-2068, 3(1), 70–76. Retrieved from https://ijmirm.com/index.php/ijmirm/article/view/94
- Mittal, A., & Pandian, P. K. G. (2022). Anomaly detection in network traffic using unsupervised learning. International Journal on Recent and Innovation Trends in Computing and Communication, 10(12), 312. https://www.ijritcc.org
- Akhil Mittal. (2024). Machine Learning-Based Phishing Detection: Improving Accuracy and Adaptability. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 587–595. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6524
- Nitin Prasad. (2024). Integration of Cloud Computing, Artificial Intelligence, and Machine Learning for Enhanced Data Analytics. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 11– 20. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6381
- Nitin Prasad. (2022). Security Challenges and Solutions in Cloud-Based Artificial Intelligence and Machine Learning Systems. International Journal on Recent and Innovation Trends in Computing and Communication, 10(12), 286–292. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10750
- Prasad, N., Narukulla, N., Hajari, V. R., Paripati, L., & Shah, J. (2020). AI-driven data governance framework for cloud-based data analytics. Volume 17, (2), 1551-1561.
- Jigar Shah, Joel lopes, Nitin Prasad, Narendra Narukulla, Venudhar Rao Hajari, Lohith Paripati. (2023). Optimizing Resource Allocation And Scalability In Cloud-Based Machine Learning Models. Migration Letters, 20(S12), 1823–1832. Retrieved from https://migrationletters.com/index.php/ml/article/view/10652
- Big Data Analytics using Machine Learning Techniques on Cloud Platforms. (2019). International Journal of Business Management and Visuals, ISSN: 3006-2705, 2(2), 54-58. https://ijbmv.com/index.php/home/article/view/76
- Shah, J., Narukulla, N., Hajari, V. R., Paripati, L., & Prasad, N. (2021). Scalable machine learning infrastructure on cloud for large-scale data processing. Tuijin Jishu/Journal of Propulsion Technology, 42(2), 45-53.
- Narukulla, N., Hajari, V. R., Paripati, L., Shah, J., Prasad, N., & Pandian, P. K. G. (2024). Edge computing and

its role in enhancing artificial intelligence and machine learning applications in the cloud. J. Electrical Systems, 20(9s), 2958-2969.

- Narukulla, N., Lopes, J., Hajari, V. R., Prasad, N., & Swamy, H. (2021). Real-time data processing and predictive analytics using cloud-based machine learning. Tuijin Jishu/Journal of Propulsion Technology, 42(4), 91-102
- Secure Federated Learning Framework for Distributed Ai Model Training in Cloud Environments. (2019). International Journal of Open Publication and Exploration, ISSN: 3006-2853, 7(1), 31-39. https://ijope.com/index.php/home/article/view/145
- Lohith Paripati. (2024). Edge Computing for AI and ML: Enhancing Performance and Privacy in Data Analysis . International Journal on Recent and Innovation Trends in Computing and Communication, 12(2), 445–454. Retrieved from https://www.ijritcc.org/index.php/ijritcc/article/view/10848
- Paripati, L., Prasad, N., Shah, J., Narukulla, N., & Hajari, V. R. (2021). Blockchain-enabled data analytics for ensuring data integrity and trust in AI systems. International Journal of Computer Science and Engineering (IJCSE), 10(2), 27–38. ISSN (P): 2278–9960; ISSN (E): 2278–9979.
- Arth Dave. (2024). Improving Financial Forecasting Accuracy with AI-Driven Predictive Analytics. International Journal of Intelligent Systems and Applications in Engineering, 12(21s), 3866 –. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6158
- Hajari, V. R., Chaturvedi, R., Sharma, S., Tilala, M., & Chawda, A. D. (2024). Risk-based testing methodologies for FDA compliance in medical devices. African Journal of Biological Sciences, 6(Si4), 3949-3960. https://doi.org/10.48047/AFJBS.6.Si4.2024.3949-3960
- Hajari, V. R., Prasad, N., Narukulla, N., Chaturvedi, R., & Sharma, S. (2023). Validation techniques for AI/ML components in medical diagnostic devices. NeuroQuantology, 21(4), 306-312. https://doi.org/10.48047/NQ.2023.21.4.NQ23029
- Hajari, V. R., Chaturvedi, R., Sharma, S., Tilala, M., Chawda, A. D., & Benke, A. P. (2023). Interoperability testing strategies for medical IoT devices. Tuijin Jishu/Journal of Propulsion Technology, 44(1), 258.
- DOI: 10.36227/techrxiv.171340711.17793838/v1
- Bellapukonda, P., Vijaya, G., Subramaniam, S., & Chidambaranathan, S. (2024). Security and optimization in IoT networks using AI-powered digital twins. In Harnessing AI and Digital Twin Technologies in Businesses (p. 14). https://doi.org/10.4018/979-8-3693-3234-4.ch024
- E. A. Banu, S. Chidambaranathan, N. N. Jose, P. Kadiri, R. E. Abed and A. Al-Hilali, "A System to Track the Behaviour or Pattern of Mobile Robot Through RNN Technique," 2024 4th International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 2024, pp. 2003-2005, doi: 10.1109/ICACITE60783.2024.10617430.
- Patil, Y. M., Abraham, A. R., Chaubey, N. K., Baskar, K., & Chidambaranathan, S. (2024). A comparative analysis of machine learning techniques in creating virtual replicas for healthcare simulations. In Harnessing AI and Digital Twin Technologies in Businesses (p. 12). https://doi.org/10.4018/979-8-3693-3234-4.ch002

- George, B., Oswal, N., Baskar, K., & Chidambaranathan, S. (2024). Innovative approaches to simulating humanmachine interactions through virtual counterparts. In Harnessing AI and Digital Twin Technologies in Businesses (p. 11). https://doi.org/10.4018/979-8-3693-3234-4.ch018
- Charaan, R. M. D., Chidambaranathan, S., Jothivel, K. M., Subramaniam, S., & Prabu, M. (2024). Machine learning-driven data fusion in wireless sensor networks with virtual replicas: A comprehensive evaluation. In Harnessing AI and Digital Twin Technologies in Businesses (p. 11). https://doi.org/10.4018/979-8-3693-3234-4.ch020
- Ayyavaraiah, M., Jeyakumar, B., Chidambaranathan, S., Subramaniam, S., Anitha, K., & Sangeetha, A. (2024). Smart transportation systems: Machine learning application in WSN-based digital twins. In Harnessing AI and Digital Twin Technologies in Businesses (p. 11). https://doi.org/10.4018/979-8-3693-3234-4.ch026
- Venkatesan, B., Mannanuddin, K., Chidambaranathan, S., Jeyakumar, B., Rayapati, B. R., & Baskar, K. (2024). Deep learning safeguard: Exploring GANs for robust security in open environments. In Enhancing Security in Public Spaces Through Generative Adversarial Networks (GANs) (p. 14). https://doi.org/10.4018/979-8-3693-3597-0.ch009
- P. V, V. R and S. Chidambaranathan, "Polyp Segmentation Using UNet and ENet," 2023 6th International Conference on Recent Trends in Advance Computing (ICRTAC), Chennai, India, 2023, pp. 516-522, doi: 10.1109/ICRTAC59277.2023.10480851.
- Athisayaraj, A. A., Sathiyanarayanan, M., Khan, S., Selvi, A. S., Briskilla, M. I., Jemima, P. P., Chidambaranathan, S., Sithik, A. S., Sivasankari, K., & Duraipandian, K. (2023). Smart thermal-cooler umbrella (UK Design No. 6329357)
- .Krishnateja Shiva. (2024). Natural Language Processing for Customer Service Chatbots: Enhancing Customer Experience. International Journal of Intelligent Systems and Applications in Engineering, 12(22s), 155–164. Retrieved from https://ijisae.org/index.php/IJISAE/article/view/6405
- Shiva, K., Etikani, P., Bhaskar, V. V. S. R., Mittal, A., Dave, A., Thakkar, D., Kanchetti, D., & Munirathnam, R. (2024). Anomaly detection in sensor data with machine learning: Predictive maintenance for industrial systems. Journal of Electrical Systems, 20(10s), 454-462.
- Kanchetti, D., Munirathnam, R., & Thakkar, D. (2024). Integration of Machine Learning Algorithms with Cloud Computing for Real-Time Data Analysis. Journal for Research in Applied Sciences and Biotechnology, 3(2), 301–306. https://doi.org/10.55544/jrasb.3.2.46
- Challa, S. S., Chawda, A. D., Benke, A. P., & Tilala, M. (2023). Regulatory intelligence: Leveraging data analytics for regulatory decision-making. International Journal on Recent and Innovation Trends in Computing and Communication, 11, 10.
- Challa, S. S. S., Chawda, A. D., Benke, A. P., & Tilala, M. (2024). Streamlining change control processes in regulatory affairs: Best practices and case studies. Integrated Journal for Research in Arts and Humanities, 4(4), 4.
- Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2019). Investigating the use of natural language processing (NLP) techniques in automating the extraction of regulatory requirements from unstructured data sources. Annals of Pharma Research, 7(5),
- Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2021). Navigating regulatory requirements for complex dosage forms: Insights from topical, parenteral, and ophthalmic products. NeuroQuantology, 19(12), 15.
- Challa, S. S. S., Tilala, M., Chawda, A. D., & Benke, A. P. (2022). Quality management systems in regulatory

affairs: Implementation challenges and solutions. Journal for Research in Applied Sciences and Biotechnology, 1(3),

- Gajera, B., Shah, H., Parekh, B., Rathod, V., Tilala, M., & Dave, R. H. (2024). Design of experiments-driven optimization of spray drying for amorphous clotrimazole nanosuspension. AAPS PharmSciTech, 25(6),
- Hajari, V. R., Chaturvedi, R., Sharma, S., Tilala, M., & Chawda, A. D. (2024). Risk-based testing methodologies for FDA compliance in medical devices. African Journal of Biological Sciences, 6(4),
- Tilala, M. (2023). Real-time data processing in healthcare: Architectures and applications for immediate clinical insights. International Journal on Recent and Innovation Trends in Computing and Communication, 11, 20.
- Tilala, M. H., Chenchala, P. K., Choppadandi, A., Kaur, J., Naguri, S., Saoji, R., & ... (2024). Ethical considerations in the use of artificial intelligence and machine learning in health care: A comprehensive review. Cureus, 16(6), 2.
- Tilala, M., & Chawda, A. D. (2020). Evaluation of compliance requirements for annual reports in pharmaceutical industries. NeuroQuantology, 18(11), 27.
- Tilala, M., Challa, S. S. S., Chawda, A. D., Pandurang, A., & Benke, D. S. S. (2024). Analyzing the role of realworld evidence (RWE) in supporting regulatory decision-making and post-marketing surveillance. African Journal of Biological Sciences, 6(14),
- Tilala, M., Chawda, A. D., & Benke, A. P. (2023). Enhancing regulatory compliance through training and development programs: Case studies and recommendations. Journal of Cardiovascular Research, 14(11),

