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     Abstract 

The single server queueing model of finite size with repeated vacations and promoted customers arrival is examined 

in this work. By employing the recursive approach, the steady-state solution is achieved. When the server is idle, or 

the system is empty, the server takes a vacation. He will resume regular work once his vacation is over if he discovers 

any customers waiting for service; if not, he will take another vacation and so on. By using a recursive method, some 

of the system's operational characteristics, such as the predicted queue length, sojourn time, and probability of 

various server statuses, are determined. When businesses provide attractive off-season sales or holiday season 

discounts, the number of consumers suddenly jumps, giving birth to the term encouraged customers. 

Keywords: Vacation, Encouraged customers, Performance metric, Poisson distribution and Queuing model. 

1. Introduction 

Applications of queuing theory are numerous and include telecommunications, city traffic, the medical area, 

inventory and management, and more. A.K. Erlang's groundbreaking contributions to the discipline have earned him 

the title of father of queueing theory. Levy & Yechiali talked about a queuing model with holidays [1]. Doshi [2] also 

investigated holidays in a waiting system. Later, vacation models were examined by Chatterjee [3] and Takagi [4]. 

Baba [6] examined the G1/M/1 queue that has several vacations. Afterwards, In recent years, academics have become 

interested in queuing systems with vacations. A queueing model incorporating working vacations was developed by 

Servi and Finn [7]. Vacation queueing models were examined by N. Tian et al. [8]. J.C. Ke [9] later researched further 

advancements in vacation queueing models.  

In general, there are two kinds of vacation queueing models: single and multiple vacation queueing models. 

Regardless of how many customers are in the system, the server in a single vacation queueing model returns to the 

regular service state at the conclusion of the vacation, but in multiple vacation queueing models, if the server detects 

no customers in the queue, he keeps on taking successive vacations till a consumer is in queue. Readers can see [10] 

and the references therein for these. This research examines a finite capacity, multiple vacation, single server 

queueing model with encouraged consumers. To the best of the author’s knowledge, a few research has been done 

on the queueing model with finite capacity with repeated vacations and encouraged customers attendance.  

Five sections make up the remainder of the paper. The model's mathematical explanation is covered in Section 2. 

The model's differential-difference equations are shown in Section 3. Section 4 discusses the model's steady-state 

equations. A few of the system's performance metrics are explained in Section 5. Section 6 presents the numerical 

results. Section 7 presents the conclusion and future scope. 
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2 Description of the Model 

The assumptions that follow are used to investigate a finite-size, single server Markovian queueing model with 

multiple vacations.  

a. Customers come accordance to the Poisson distribution with parameter μ= λ(1 + ξ), where ξ is the factor that 

determines the customers' encouraged arrival. It is assumed that the service rate is exponentially distributed. 

b. Customers receive attention to on a First Cum First Serve (FCFS) basis. 

c. If the system is empty, the single server enjoys a vacation. With parameter θ, the vacation time divides 

exponentially. The server only returns normal activities when his break is over if there remain customers waiting in 

the system; otherwise, he will take another holiday. 

d. The system's finite size is M. 

The system's transition state diagram is shown in Figure 1.  

 

  
      Fig.1 

Assume S(t) is the server place at time t and N(t) is the total number of consumers in the system at time t.  

S(t) = {
0, if the server is on vacation 

1, if the server is in a normal working state 
  

Then, {N(t), S(t), t ≥ 0} is a Markov process, and Ω = {(m, j), 1 < m ≤ M, j = 0, 1} U {(0, 0)}is an example of its 

state space.  

 

       3. Differential Difference Equations 

The model's differential difference equations are: 
𝑑

𝑑𝑡
𝑝0,0(𝑡) = 𝛿𝑝1,1(𝑡) − 𝜆(1 + 𝜉)𝑝0,0(𝑡)                                                                                              (1.1) 

𝑑

𝑑𝑡
𝑝𝑚,0(𝑡) = 𝜆(1 + 𝜉)𝑝𝑚−1,0(𝑡) − (𝜆(1 + 𝜉 ) + 𝜃)𝑝𝑚,0(𝑡), 𝑚 = 1,2,3, … … . 𝑀 − 1                      (1.2) 

𝑑

𝑑𝑡
𝑝𝑀,0(𝑡) =  𝜆(1 + 𝜉)𝑝𝑀−1,0(𝑡) + 𝜃𝑝𝑀,0(𝑡)                                                                                     (1.3) 

𝑑

𝑑𝑡
𝑝1,1(𝑡) =  𝛿𝑝2,1(𝑡) + 𝜃𝑝1,0(𝑡) − (𝜆(1 + 𝜉 ) + 𝛿)𝑝1,1(𝑡)                                                              (1.4) 

𝑑

𝑑𝑡
𝑝𝑚,1(𝑡) =  𝛿𝑝𝑚+1,1(𝑡) + 𝜆(1 + 𝜉)𝑝𝑚−1,1(𝑡) + 𝜃𝑝𝑚,0(𝑡) − (𝜆(1 + 𝜉 ) + 𝛿)𝑝𝑚,1(𝑡), 

                                                                                                                      𝑚 = 2,3, … … . 𝑀 − 1                  (1.5)     
𝑑

𝑑𝑡
𝑝𝑀,1(𝑡) =  𝛿𝑝𝑀−1,1(𝑡) + 𝜃𝑝𝑀,0(𝑡) −  𝛿𝑝𝑀,1(𝑡)                                                                           (1.6) 

4. Steady- State Equations and Solutions 

Taking limit t → ∞, we have 
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lim
𝑡→∞

𝑝𝑚,𝑗(𝑡) = 𝑝𝑚,𝑗,   j=0,1 

𝑑

𝑑𝑡
𝑝𝑚,𝑗(𝑡) = 0,     j=0,1 

𝜆(1 + 𝜉)𝑝0,0 =  𝛿𝑝1,1                                                                                                                       (1.7) 

(𝜆(1 + 𝜉 ) + 𝜃)𝑝𝑚,0 =  𝜆(1 + 𝜉)𝑝𝑚−1,0,  𝑚 = 1,2,3, … … . 𝑀 − 1                                                       (1.8) 

𝜃𝑝𝑀,0 ==  𝜆(1 + 𝜉)𝑝𝑀−1,0                                                                                                              (1.9) 

(𝜆(1 + 𝜉 ) +  𝛿)𝑝1,1 =  𝛿𝑝2,1 + 𝜃𝑝1,0                                                                                              (1.10) 

(𝜆(1 + 𝜉 ) +  𝛿)𝑝𝑚,1 =  𝛿𝑝𝑚+1,1 +  𝜆(1 + 𝜉)𝑝𝑚−1,1 + 𝜃𝑝𝑚,0, 𝑚 = 1,2,3, … … . 𝑀 − 1                (1.11) 

𝛿𝑝𝑀,1 =  𝛿𝑝𝑀−1,1 +  𝜃𝑝𝑀,0                                                                                                              (1.12) 

On solving equation (1.8) recursively, we get: 

𝑝𝑚,0 = [
(𝜆(1+𝜉))

𝜆(1+𝜉)+𝜃
]

𝑚
𝑝0,0               𝑚 = 1,2,3, … … . 𝑀 − 1                                                               (1.13) 

By equation 1.9, we have 

𝑝𝑚,0= 
𝜆(1+𝜉 )

𝜃
[

(𝜆(1+𝜉))

𝜆(1+𝜉)+𝜃
]

𝑀−1
𝑝0,0                                                                                                                  (1.14) 

By equations (1,7) (1,10) (1,11), we get 

𝑝1,1= (
𝜆(1+𝜉 )

 𝛿
) 𝑝0,0                                                                                                                                         (1.15) 

𝑝
𝑚,1=[(

𝜆(1+𝜉 )
 𝛿

)
𝑚     

( 1+
(𝜆(1+𝜉))

2
 𝛿+𝜆(1+𝜉)𝜃𝛿−𝜆(1+𝜉) 𝛿2− 𝛿2𝜃

(𝜆(1+𝜉)− 𝛿)(𝜆(1+𝜉)+𝜃)(𝜆(1+𝜉)+𝜃− 𝛿)
)− (

𝜆(1+𝜉 )
𝜆(1+𝜉)+𝜃 

)
𝑚     (𝜆(1+𝜉)+𝜃)

(𝜆(1+𝜉)+𝜃− 𝛿)
]     𝑝0,0   

 

                                                                                                                             𝑚 = 1,2,3, … … . 𝑀 − 1     (1.16) 

𝑝𝑀,1 = [ (
𝜆(1+𝜉 )

 𝛿
) {(

𝜆(1+𝜉 )

 𝛿
)

𝑀−1
( 1 +

(𝜆(1+𝜉))
2

 𝛿+𝜆(1+𝜉)𝜃𝛿−𝜆(1+𝜉) 𝛿2− 𝛿2𝜃

(𝜆(1+𝜉)− 𝛿)(𝜆(1+𝜉)+𝜃)(𝜆(1+𝜉)+𝜃− 𝛿)
) − (

𝜆(1+𝜉 )

𝜆(1+𝜉)+𝜃 
)

𝑀−1 (𝜆(1+𝜉 )+𝜃)

(𝜆(1+𝜉)+𝜃− 𝛿)
} +

𝜆(1+𝜉 )

 𝛿
(

𝜆(1+𝜉 )

𝜆(1+𝜉)+𝜃 
)

𝑀−1

] 𝑝0,0                                                                                                            (1.17) 

Consequently, 𝑝0,0 , which can be constructed from the standardization condition as follows, is used to signify all 

of the probabilities. 

∑ 𝑝𝑚,0 +𝑀
𝑚=0 ∑ 𝑝𝑚,1

𝑀
𝑚=1 = 1                                                                                                        (1.18) 

𝑝0,0 [1 + ∑ [
𝜆(1+𝜉)

𝜆(1+𝜉)+𝜃
]

𝑚
+

𝜆(1+𝜉 )

 𝜃
[

𝜆(1+𝜉)

𝜆(1+𝜉)+𝜃
]

𝑀−1
+

𝜆(1+𝜉 )

 𝛿
+𝑀−1

𝑚=1 ∑ [
𝜆(1+𝜉)

𝛿
]

𝑚
( 1 +𝑀

𝑚=2

(𝜆(1+𝜉))
2

 𝛿+𝜆(1+𝜉)𝜃𝛿−𝜆(1+𝜉) 𝛿2− 𝛿2𝜃

(𝜆(1+𝜉)− 𝛿)(𝜆(1+𝜉)+𝜃)(𝜆(1+𝜉)+𝜃− 𝛿)
) − (

𝜆(1+𝜉 )

𝜆(1+𝜉)+𝜃 
)

𝑚 (𝜆(1+𝜉 )+𝜃)

(𝜆(1+𝜉)+𝜃− 𝛿)
] = 1                                        (1.19) 

𝑝0,0 = [1 + ∑ [
𝜆(1+𝜉)

𝜆(1+𝜉)+𝜃
]

𝑚
+

𝜆(1+𝜉 )

 𝜃
[

𝜆(1+𝜉)

𝜆(1+𝜉)+𝜃
]

𝑀−1
+

𝜆(1+𝜉 )

 𝛿
+𝑀−1

𝑚=1 ∑ [
𝜆(1+𝜉)

𝛿
]

𝑚
( 1 +𝑀

𝑚=2

(𝜆(1+𝜉))
2

 𝛿+𝜆(1+𝜉)𝜃𝛿−𝜆(1+𝜉) 𝛿2− 𝛿2𝜃

(𝜆(1+𝜉)− 𝛿)(𝜆(1+𝜉)+𝜃)(𝜆(1+𝜉)+𝜃− 𝛿)
) − (

𝜆(1+𝜉 )

𝜆(1+𝜉)+𝜃 
)

𝑚 (𝜆(1+𝜉 )+𝜃)

(𝜆(1+𝜉)+𝜃− 𝛿)
]

−1

                                           (1.20) 

5. Performance Measures 

𝐸[𝐿𝑞0
] =Expected queue length when server is on vacation. 

             =∑ 𝑚𝑝𝑚,0
𝑀
𝑚=0  

             =𝑝1,0 + 2𝑝2,0 + 3 𝑝3,0 + ⋯ … … . + 𝑀𝑝𝑀,0                                                               (1.21)   

 𝐸[𝐿𝑞1
] = Expected queue length when server is on working state. 

https://urr.shodhsagar.com/


Universal Research Reports 
ISSN: 2348-5612 | Vol. 12 | Issue 1 | Jan-Mar 25 | Peer Reviewed & Refereed   

 

411 
    

© 2025 Published by Shodh Sagar. This is a Open Access article distributed under the terms of the Creative Commons License  
[CC BY NC 4.0] and is available on https://urr.shodhsagar.com  

              =∑ (𝑚 − 1)𝑝𝑚,1
𝑀
𝑚=1  

              =𝑝2,1 + 2𝑝3,1 + 3𝑝4,1+…….+(M-1) 𝑝𝑀,1                                                                        (1.22) 

       PW        = Probability that server is on working state  

                =∑ 𝑝𝑚,1
𝑀
𝑚=1                                                                                                                 (1.23) 

       Pv        = Probability that server is on vacation. 

               =∑ 𝑝𝑚,0
𝑀
𝑚=0                                                                                                                (1.24) 

   𝐸[𝐿𝑞] = Expected queue length 

              = 𝐸[𝐿𝑞0
] + 𝐸[𝐿𝑞1

]                                                                                                                  (1.25) 

   𝐸[𝑊𝑞] = Expected sojourn time of customer in the queue. 

                =     
𝐸𝐿𝑞

𝜆(1+𝜉)
  ,            (Using little’s formula)                                                                    (1.26) 

ELs = Expected system length 

          =∑ 𝑚𝑝𝑚,0
𝑀
𝑚=0 +∑ 𝑚𝑝𝑚,1

𝑀
𝑚=1             

                                                                                                                                                             (1.27) 

EWs = Expected sojourn time of customer in the system 

             =     
𝐸𝐿𝑠

𝜆(1+𝜉)
     ,               (Using little’s formula)                                                              (1.28) 

 

6. Numerical Results 

This section examines how the system's key performance metrics vary depending on a number of different factors. 

Unless they are considered variables to examine the changes, we have set the values as λ = 3, δ = 6, ξ = 0.5,  

θ = 0.30, and M = 62. 

 

Sensitivity Analysis  

Table 1: Effect of service rate δ on expected queue length ELq for various values of ξ 

 

 

 

S. No 

 

 

Δ 

       

 

   ξ =0.3 

    E[Lq]                   

 

     ξ =0.4      

 

 

ξ =0.5 

1 6.0 11.7084 12.5296 13.8524 

2 6.3 11.6698 12.4804 13.8216 

3 6.6 11.6393 12.4423 13.7967 

4 6.9 11.6148 12.4125 13.7764  

5 7.2 11.5952 12.3891 13.7598 

6 7.5 11.5794 12.3707 13.746  

7 7.8 11.5666 12.3562 13.7346 

8 8.1 11.5563 12.344 13.7252 

9 8.4 11.5479 12.3360 13.7173  

10 8.7 11.5412 12.3291 13.7107 
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                                Fig.2 Expected queue length vs. δ for different ξ 

 

Table 2:  Effect of λ on expected queue length ELq  

 

 

S. No 

 

 

Λ 

       

 

   ξ =0.3 

    E[Lq]                   

 

     ξ =0.4      

 

 

ξ =0.5 

1 1.0 9.0708 9.7296 10.8245 

2 1.2 9.698 10.4801 11.3216 

3 1.4 10.2293 11.0058 11.9767 

4 1.6 10.7748 11.4125 12.4774  

5 1.8 11.3252 12.1591 12.9998 

6 2.0 11.8594 12.7073 13.5746  

7 2.2 12.3766 13.2569 14.1346 

8 2.4 12.8563 13.9774 14.7225 

9 2.6 13.3479 14.2860 15.1773  

10 2.8 13.8412 14.3291 15.7107 

11 3.0 14.3213 15.2314 16.3245 

12 3.2 14.7850 15.7855 16.8731 

13 3.4 15.2433 16.2890 17.5328 

 

11

11.3

11.6

11.9

12.2

12.5

12.8

13.1

13.4

13.7

14

6 6 . 3 6 . 6 6 . 9 7 . 2 7 . 5 7 . 8 8 . 1 8 . 4 8 . 7

𝐸
[𝐿
𝑞

]

SERVICE RATE 

ξ=0.3 ξ=0.4 ξ=0.5

δ
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                                Fig.3 Expected queue length E[Lq] vs. λ for different ξ 

Because of the related drop in the server's mean service time, Figure 2 illustrates how, with a set encouragement rate 

ξ, the expected length of the queue continues to fall as μ increases. As the rate of encouragement increases, the 

expected length of the queue continues to grow. 

Figure 3 shows how the average queue length changes as λ changes. When λ increases, the mean arrival rate also 

rises, provided that the encouragement rate remains constant. With the pace of encouragement, this expected line 

length increases to grow.  

7. CONCLUSION AND FUTURE SCOPE 

In a steady state, a finite capacity single server queueing model with repeated vacations and promoted customer 

arrival is examined. The recursive method has been used to obtain the formulas for expected system length and queue 

length in both regular and vacation states, as well as the estimated sojourn time of customers in the queue.  

It has been found that the expected length of wait increases with the arrival rate and falls as the service and 

vacation rate increases. The effect of the vacation and arrival rates on the system's various state probabilities is 

examined both graphically and numerically. Any organization may benefit greatly from the results of this article, 

which show that vacations increase server efficiency and that special offers encourage consumers.  

Additionally, systems with several servers and those in a temporary state can also benefit from studying this 

approach. 
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