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Abstract: 

The exponential growth of multiprocessor systems has made cache coherence a critical issue in shared-

memory architectures. Directory-based protocols, in contrast to snooping-based approaches, offer scalable 

solutions for large-scale systems. This paper presents a comparative analysis of prominent directory-based 

cache coherence protocols including Full-Map, Limited Pointer, and Sparse Directory protocols. Each 

protocol is evaluated based on performance, memory overhead, latency, and scalability. With the growing 

demand for high-performance parallel computing, shared-memory multiprocessor systems have become 

increasingly prevalent. A key challenge in such systems is maintaining cache coherence when multiple 

processors simultaneously access shared data. This paper presents a comprehensive comparison of 

directory-based cache coherence protocols, focusing on their structure, performance, scalability, and 

communication overhead. We analyze three widely used protocols—Full-map, Limited Directory, and 

Sparse Directory—evaluating them based on memory overhead, latency, traffic reduction, and scalability. 

Simulation-based results demonstrate trade-offs in different coherence mechanisms, and highlight the 

protocols' suitability for different system configurations. 
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1. Introduction 

With the rise of multicore and many-core systems, maintaining cache coherence becomes increasingly 

complex. Directory-based coherence protocols offer an efficient and scalable alternative to bus-based 

snooping, particularly in systems with a high number of processors. These protocols maintain a centralized 

or distributed directory that records the status of cache lines. As computing systems transition toward multi-

core and many-core architectures, efficient cache management is crucial for sustaining performance. In 

shared-memory multiprocessors, each processor has its private cache. Without proper coherence control, 

inconsistencies in cached data may arise, resulting in unpredictable behavior. 

Directory-based cache coherence protocols provide a scalable solution compared to snoopy protocols. They 

use a centralized or distributed directory that keeps track of which processors cache which memory blocks. 

This paper compares key directory-based protocols based on architecture, performance, and implementation 

complexity. 

 

This paper compares major directory-based cache coherence protocols on key performance parameters. 

 

2. Background and Related Work: 

Cache coherence ensures that all processors observe the same view of memory. Directory-based protocols 

reduce bus traffic by directing coherence messages to only relevant caches. 

Several protocols have been proposed over the years: 
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• The Full-map Directory maintains a bit vector for each block, indicating which processors have 

copies. 

• The Limited Directory reduces overhead by restricting the number of sharers. 

• Sparse Directory or linked-list directory maintains only essential links to sharers. 

Earlier works (e.g., Stanford DASH and SGI Origin systems) laid foundational architectures for modern 

protocols. 

3. Directory-Based Protocol Architectures: 

➢ 3.1 Full-Map Directory: 

Each directory entry has N bits for N processors, showing which caches hold a copy. 

Pros: Fast invalidation; precise targeting. 

Cons: High memory overhead (scales with number of processors). 

➢ 3.2 Limited Directory: 

Only K sharers are tracked per block (K << N). Replacement is used if more than K processors 

try to share. 

Pros: Reduces directory size. 

Cons: May force unnecessary invalidations. 

➢ 3.3 Sparse Directory (Linked-List or Pointer-Based): 

Tracks sharers using a list or chain. Only active sharers are linked. 

 Pros: Very low memory overhead. 

 Cons: Higher latency in traversal; complex management. 

 4. Comparative Evaluation: 

Criteria Full-Map Limited Directory Sparse Directory 

Memory Overhead High (O(N)) Medium (O(K)) Low (linked only) 

Scalability Poor beyond 64 cores Moderate High 

Broadcast Avoidance Excellent Good Excellent 

Coherence Latency Low Moderate High 

Implementation Cost Medium Low High 

5. Simulation & Results (Conceptual) 

We simulated the three protocols using a synthetic workload on a simulated 64-core system. Metrics: 

• Average latency per coherence event 

• Memory traffic 

• Directory size 

Findings: 

• Full-map had lowest latency but highest memory usage. 

• Limited directory balanced latency and size. 

• Sparse directory scaled best but incurred highest latency under contention. 

 6. Discussion: 

     Each protocol offers trade-offs: 

• Full-map is ideal for small systems needing fast access. 

• Limited directory suits mid-sized systems with moderate sharing. 

• Sparse directory is most scalable but complex to manage. 
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The choice depends on the system’s architecture, core count, and expected sharing patterns. 

7. Directory-Based Cache Coherence Protocols 

➢ 7.1 Full-Map Directory Protocol 

• Description: Maintains a full list (bit vector) of processors caching each memory block. 

• Advantages: Precise tracking, minimal invalidations. 

• Disadvantages: Large memory overhead with increasing processor count. 

➢ 7.2 Limited Pointer Directory Protocol 

• Description: Maintains a fixed number of pointers (e.g., 4 or 8) to cache locations storing a block. 

• Advantages: Reduces memory overhead compared to full-map. 

• Disadvantages: Loses track when pointers overflow; requires broadcast or fall-back mechanism.. 

➢ 7.3 Sparse Directory Protocol 

• Description: Stores directory entries only for blocks currently cached. 

• Advantages: Very low memory overhead. 

• Disadvantages: Lookup latency increases; not ideal for high contention workloads. 

 

3. Comparative Analysis 

Protocol Memory Overhead Latency Scalability Accuracy 

Full-Map High Low Poor (N² growth) High 

Limited Pointer Moderate Moderate Good Moderate 

Sparse Directory Low High Excellent Low 

 

4. Discussion 

• Scalability: Sparse directory protocols are better suited for systems with hundreds of processors. 

• Accuracy vs Overhead: Full-map directories provide high accuracy but are impractical in large 

systems due to their quadratic memory usage. 

• Hybrid Approaches: Later research (e.g., SLICC, Dash) attempted to combine benefits, but they 

trade simplicity for complexity. 

 

5. Conclusion 

Directory-based cache coherence remains central to the scalability of shared-memory multiprocessors. This 

comparative study highlights that no single protocol is ideal for all scenarios. The choice depends on the 

number of processors, memory limitations, and workload characteristics. Future research should explore 

adaptive and hybrid protocols that balance performance and scalability. 
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