

Study of Properties of inverse trigonometric functions Sunita

Abstract : Inverse of a function 'f' exists, if the function is one-one and onto, Since trigonometric functions are many-one over their domains, we restrict their domains and co-domains in order to make them one-one and onto and then find their inverse.

Domains And Ranges

The domains and ranges (principal value branches) of inverse trigonometric functions are given below

Functions	Domain	Range (Principal value branches)
$y = \sin^{-1}x$	[-1,1]	$\frac{-\pi}{2},\frac{\pi}{2}$
$y = \cos^{-1}x$	[-1,1]	[0,π]
$y = \operatorname{cosec}^{-1} x$	R – (–1,1)	$\frac{-\pi}{2}, \frac{\pi}{2} - \{0\}$
$y = \sec^{-1}x$	R – (–1,1)	$[0,\pi] - \frac{\pi}{2}$
$y = \tan^{-1}x$	R	$\frac{-\pi}{2}, \frac{\pi}{2}$
$y = \cot^{-1}x$	R	$(0,\pi)$

The Definition of Inverse trig functions can be seen as the following formulas. Each is the inverse of their respective trigonometric function. Also, each inverse trig function also has a unique domain and range that make them one-to-one functions.

•Inverse Sine function= arcsinx

•Inverse Cosine Function= arccosx

•Inverse Tangent Function= arctanx

•Inverse Secant Function= arcsecx

•Inverse Cotangent Function= arccotx

•Inverse Cosecant Function= arccscx

Properties of inverse trigonometric functions :

 $x \quad \overline{2}, \overline{2}$ 1. $\sin^{-1}(\sin x) = x$ x [0,] $\cos^{-1}(\cos x) = x$ $x \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ $\tan^{-1}(\tan x) = x$: $x \in (0,\pi)$ $\cot^{-1}(\cot x) = x$: x $[0,\pi] - \frac{\pi}{2}$ $\sec^{-1}(\sec x) = x$ • $x = \frac{-\pi}{2}, \frac{\pi}{2} = \{0\}$ $\operatorname{cosec}^{-1}(\operatorname{cosec} x) = x$: 2. $\sin(\sin^{-1} x) = x$ $\in [-1,1]$ $\cos\left(\cos^{-1}x\right) = x$ $x \in [-1,1]$ $\tan\left(\tan^{-1}x\right) = x$ $x \in \mathbf{R}$ $\cot(\cot^{-1}x) = x$ $x \in \mathbf{R}$ $x \in \mathbf{R} - (-1, 1)$ $\sec(\sec^{-1} x) = x$ $\operatorname{cosec}(\operatorname{cosec}^{-1} x) = x$: $x \in \mathbf{R} - (-1, 1)$

3.
$$\sin^{-1} \frac{1}{x} \quad \csc^{-1}x : \qquad x \in \mathbf{R} - (-1,1)$$
$$\cos^{-1} \frac{1}{x} \quad \sec^{-1}x : \qquad x \in \mathbf{R} - (-1,1)$$
$$\tan^{-1} \frac{1}{x} \quad \cot^{-1}x : \qquad x \in \mathbf{R} - (-1,1)$$
$$\tan^{-1} \frac{1}{x} \quad \cot^{-1}x : \qquad x < 0$$
$$= -\pi + \cot^{-1}x : \qquad x < 0$$
4.
$$\sin^{-1} (-x) = -\sin^{-1}x : \qquad x < 0$$
4.
$$\sin^{-1} (-x) = -\sin^{-1}x : \qquad x < 0$$
4.
$$\sin^{-1} (-x) = -\sin^{-1}x : \qquad x < [-1,1]$$
$$\tan^{-1} (-x) = \pi - \cos^{-1}x : \qquad x < \mathbf{R}$$
$$\cot^{-1} (-x) = \pi - \cot^{-1}x : \qquad x < \mathbf{R}$$
$$\cot^{-1} (-x) = \pi - \cot^{-1}x : \qquad x < \mathbf{R}$$
$$\sec^{-1} (-x) = \pi - \cot^{-1}x : \qquad x < \mathbf{R}$$
$$\sec^{-1} (-x) = \pi - \sec^{-1}x : \qquad x < \mathbf{R} < -(-1,1)$$
$$\cos^{-1} (-x) = -\csc^{-1}x : \qquad x < \mathbf{R} < -(-1,1)$$
5.
$$\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2} : \qquad x < \mathbf{R}$$

$$\sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}$$
 : $x \in \mathbf{R} - [-1, 1]$

6.
$$\tan^{-1}x + \tan^{-1}y = \tan^{-1}\frac{x \cdot y}{1 - xy}$$
 : $xy < 1$
 $\tan^{-1}x - \tan^{-1}y = \tan^{-1}\left(\frac{x - y}{1 + xy}\right)$; $xy > -1$

7.
$$2\tan^{-1}x = \sin^{-1}\frac{2x}{1-x^2}$$
 : $-1 \le x \le 1$
 $2\tan^{-1}x = \cos^{-1}\frac{1-x^2}{1-x^2}$: $x \ge 0$
 $2\tan^{-1}x = \tan^{-1}\frac{2x}{1-x^2}$: $-1 < x < 1$

References :

- 1. Ahlfors, L.V., Complex Analysis. McGraw-Hill Book Company, 1979.
- 2. Conway, J.B., Functions of One complex variables Narosa Publishing, 2000.
- 3. Priestly, H.A., Introduction to Complex Analysis Claredon Press, Orford, 1990.
- 4. D.Sarason, Complex Function Theory, Hindustan Book Agency, Delhi, 1994.
- 5. Mark J.Ablewitz and A.S.Fokas, Complex Variables : Introduction & Applications,

Cambridge University Press, South Asian Edition, 1998.