
© UNIVERSAL RESEARCH REPORTS | REFEREED | PEER REVIEWED

ISSN : 2348 - 5612 | Volume : 05 , Issue : 03 | January – March 2018

 145

A study of Concurrency control techniques in Distributed database

Yogita Yashveer Raghav, Assistant professor, K.R Mangalam University, SohnaRoad, Gurgaon

ygtraghav@gmail.com

Abstract: This paper surveys the basic

concurrency control techniques in Distributed

database system. Distributed database is the

collection of the databases stored at different sites

in the interrelated manner over the network.

Concurrency control techniques are required

because parallel transactions are to be executed at

the same time. In this paper i have discussed

various concurrency control techniques, their

advantages and disadvantages and make

comparative study between them.

Replication of data states, that the same copy of

data has been maintained in different sites so that

if one data sites fails, the same data can be

recovered by other sites and execution of the query

can be done by taking the data from other sites. But

to use the replica we need to maintain the

concurrency control techniques, otherwise

inconsistency can occur in the execution of the

transactions and incorrect value can occur.

Keywords: Distributed Database, Deadlock,

transaction, Concurrency, locking, Cascading

rollback, time stamp ordering, and performance.

1 Introduction:

In Distributed database system data is scattered at

various data sites in the form of fragmentation. For

faster accessing of data, not to depend on any single

data site at the time of failure data can be recovered

and accessed by another data sites. Replication is to

be introduced. It means replica is to be maintained at

different data sites so consistency needs to be

maintained between replicas otherwise some other

issues can be occurred.

As we all know that ACID properties need to follow

by every transaction which are explained as follows

Atomicity: This property says that either all or

none.it means that either the transaction should

commit completely or it should rollback if any

failure occur.

Consistency: This property

means that transaction should be

in the consistent state before or

after the transaction.

Isolation: It means that

transaction executes in

concurrent manner but each and

every transaction should assume that they are

executing in isolation. Any transaction should not

interfere another transaction.

Durability: This property says that transactions

should be recoverable from the failures.

2. Problems of Concurrent Transaction: Due to

concurrent execution of the transactions, some issues

may be arising that are discussed following:

2.1. Lost and update: it means that any

transaction’s update can be lost due to concurrent

execution of the transaction that is explained in

following example

Transaction T1 Transaction T2

R(A)

A=A+10 R(A)

 A=A+200

 W(A)

W(A)

Figure 1

In the example Transaction T1 reads the value of

Data item Initially we assume that Data item A’s

value is 100, update it and add 10 in it.to before

writing in local buffer, control is pre-empted by

transaction 2 and that reads the value of A that is

stored in database i.e. 100.and update and add in it

200.Now A’s Value is 300 for transaction T2.Then

control is transferred to transaction 1 and write the

value 110 in local buffer of transaction 1. Now the

problem is that for same data item A, both

transactions have the different value, which is

inconsistent. That should not happen in transaction

2.2 Dirty Read: it means that any transaction’s

updated value such as transaction 1‘s updated value

of A is to be read by transaction 2, and before

committing Transaction 1, it fails and rollback. Now

© UNIVERSAL RESEARCH REPORTS | REFEREED | PEER REVIEWED

ISSN : 2348 - 5612 | Volume : 05 , Issue : 03 | January – March 2018

 146

Transaction 2 has been committed so cannot be

rollback. This problem is called the dirty read

problem. That should not happen in transaction for

maintaining the consistency.

Figure 2

2.3 Unrepeated read (W R Conflict): If a

transaction T1 reads an item value twice and the

item is changed by another transaction T2 in

between the two read operation of the same item.

Initially A has 100.so transaction T1 reads it and

Transaction T2 preempts the control update the Data

item A and add 200 into it.A becomes 300.Then

Transaction T1 reads A.Now it has become

300.Now it is also a issue because Every transaction

should execute in isolation.

Figure 3

2.4 Incorrect Summary Problem: If one

transaction is calculating aggregate summary

function on a number of records, while other

transaction is updating some of these records, the

aggregate function may calculate some values before

they are updated and others after they are updated-

result in incorrect summary. Initially A=100,

Y=200:

Figure

4

These are the some problems that need to be handled

otherwise inconsistency will occur.

3. Solution of the concurrent Execution of

transaction problem: Solution of the problem

is locking. Locking is the mechanism by which

any transaction cannot read or write data until it

acquires an appropriate lock on it.

Lock can be of two types: Exclusive and shared

Shared Lock: If any data item needs to be read

only, then we need to acquire shared lock. In

shared lock we cannot write or update the value

of data item.

Exclusive Lock: If any data item needs to be

read or write then we need to acquire exclusive

lock.

3.1 Two-Phase Locking Protocol

Principles- This Protocol used to ensure

seriabilzability by forcing some restriction on

transaction as Any transaction is not allowed to

obtain new locks till it had released a lock this

restriction called two phase locking(2pl). This

protocol called 2pl because it has two principal

phases as in figure (5).

Figure 5

The first phase is known as the growing phase;

in which a transaction acquires all the locks it

Transaction T1 Transaction T2

R(A)

A=A+10

W(A)

 R(A)

 A=A+200

 W(A)

Failure Occur

 Commit

Transaction T1 Transaction T2

R(A)

 R(A)

 A=A+200

 W(A)

R(A)

Transaction T1 Transaction T2

 Sum =0

 R(A)

 Sum=sum+A

 R(B)

 Sum=sum+Y

R(Y)

Y=y+100

W(Y)

Roll

back

Sum=100

Sum=300

Lock Point

Gr

o

wi

ng

p

ha

se

Shr

ink

ing

Ph

as

e

© UNIVERSAL RESEARCH REPORTS | REFEREED | PEER REVIEWED

ISSN : 2348 - 5612 | Volume : 05 , Issue : 03 | January – March 2018

 147

needs. In this phase transaction cannot release

the lock. The second phase is known as the

shrinking phase, where the process releases the

locks but cannot acquire the lock. If a process

fails to acquire all the locks during the first

phase, then it is necessary to release all of them,

wait, and then start over. [12] This protocol

ensures conflict– serializable schedules.

Discussion- This protocol may be good in case of

absence of any information about the

transactions or the database. There are three

types of phase locking protocol as in figure (1):

strict two-phase locking, rigorous two-phase

locking and conservative locking.

3.2 Strict two-phase Locking

In Basic 2PL the problem of deadlock and

cascading rollback occurs. Strict two phase

Locking has solved the problem of Cascading

rollback by following given strategy, but

deadlock is not solved by Strict 2PL.

 [1] In this protocol any transaction

does not release any of its exclusive write lock

until after it commits or aborts. Other

transactions cannot access to locked item until

current transaction has committed. Transaction

must hold all its exclusive locks till it commits

or aborts and no cascading rollback takes place.

Read lock of transaction can be released when

transaction terminates (commits its results) but

write must be maintained until after

commitment or abortion of transaction.

3.3 Rigorous two-phase Locking

[1] It is more restrictive variation of strict

2PL.But this technique also is not successful for

solving the problem of deadlock. All locks (read

and write) are held until after transaction

commits or aborts. Drawbacks of these

protocols are Deadlock and starvation which

occurs when a transaction cannot proceed for an

indefinite period of time while other

transactions in the system continue normally.

3.4 Conservative two phase Locking

In Conservative two phase locking any

transaction before starting its execution acquires

the locks first on the entire data item which are

required in execution. Then starts execution.

This technique has solved the problem of

deadlock. But it is not the suitable and good

solution for solving the problem.

1. It has proved obstacle in concurrent execution

of transactions.

2. Resources are not fully utilized in this

technique.

4. Wait-Die & Wound-Wait Algorithms:

These protocols are based on the timestamp

value. Timestamp is the value or time when any

transaction enters in the system.

4.1 WAIT-DIE Rule: [1] If Ti requests a lock

on a data item which is already locked by Tj,

then Ti is permitted to wait iff TS(Ti)<TS(Tj).

 If TS(Ti) > TS(Tj), then Ti is aborted and

restarted with the same timestamp.

1. if TS(Ti) < TS(Tj) then Ti waits else Ti

dies

2. non-preemptive: Ti never preempts Tj

3. prefers younger transactions

4.2 WOUND-WAIT Rule: [1] If Ti requests a

lock on a data item which is already locked by

Tj , then Ti is permitted to wait iff

TS(Ti)>TS(Tj). If TS(Ti)<TS(Tj), then Tj is

aborted and the lock is granted to Ti.

1. if TS(Ti)<TS(Tj) then Tj is wounded

else Ti waits

2. preemptive: Ti preempts Tj if it is

younger

3. prefers older transactions

4.3 Basic Timestamp Ordering Algorithm

[1] Time Stamp can be used to determine the

out datedness of a request with respect to the

data object it is operating on and to order events

with respect to one another. Timestamp is a

unique identifier used to identify a transaction.

In this algorithm transaction is ordered based on

their timestamp values. The timestamp-ordering

protocol ensures serializability among

transaction in their conflicting Read and Write

operations. [11]. This is the responsibility of the

© UNIVERSAL RESEARCH REPORTS | REFEREED | PEER REVIEWED

ISSN : 2348 - 5612 | Volume : 05 , Issue : 03 | January – March 2018

 148

Protocol system that the conflicting pair of tasks

should be executed according to the timestamp

values of the transactions.

Rule:

1. Transaction T issue R (A) operation.

If W(TS) > TS (T)

Then rollback T

Otherwise

Execute R (A) successfully

and set R(TS) (A) = max {R(TS) (A),

TS (T)}.

2. Transaction T issues W (A) operation.

If RTS (A) > TS (T)

Then rollback T

If WTS (A) > TS (T)

Then rollback T

Otherwise

Execute W (A) successfully

and set WTS (A) =TS (T).

5. Conclusion: In this paper we have described

that Distributed database system is considered

to be more reliable. It is really mandatory for

database to perform the ACID properties. I have

also discussed problems of concurrent execution

of transactions such as lost update problem,

dirty read, unrepeated read and incorrect

summary problem. Then I have discussed

concurrency control algorithms such as, basic

2PL, Strict 2PL rigorous 2PL, Conservative

2PL, Wait and die, Wound and wait and

timestamp ordering,. Now a day’s distributed

database systems becomes very important for

computer science. Many organizations are now

deploying distributed database systems.

References:

[1] Manoj Kumar Sah 1, Vinod Kumar 2, Ashish

Tiwari 3,Security and Concurrency Control in

Distributed Database System, International Journal

of scientific research and management(IJSRM),

Volume 2,Issue 11 Pages 1839-1845 ,2014

[2] D. G. Shin, and K. B. Irani, “Fragmenting

relations horizontally using knowledge based

approach,” IEEE Transactions on Software

Engineering (TSE), Vol. 17, No. 9, pp. 872–

883, 1991.

[3] E. S. Abuelyaman, “An optimized scheme

for vertical partitioning of a distributed

database,” Int. Journal of Computer Science &

Network Security,Vol. 8, No.1, 2008.

[3] Gupta Dhiraj and Gupta V.K., Approaches

for Deadlock Detection and Deadlock

Prevention for Distributed, Res. J. Recent Sci.,

1(ISC-2011), 422-425 (2012).

[4] Michael J. Carey Miron Livny ,Distributed

Concurrency Control Performance: A Study of

Algorithms, Distribution, and Replication,

Computer Sciences Department University of

Wisconsin Madison, WI 53706.

[5]Md. Tabrez Quasim, (2013). An Efficient

Approach For Concurrency Control In

Distributed Database System. Indian Streams

Research Journal, Vol. III, Issue. IX

[6] Bernstein P and Goodman N "Timestamp-

Based Algorithms for Concurrency Control in

Distributed Database Systems,” Proc. 6th

VLDB Cot& Mexico City, Mexico, Oct.1980.

[7] M. AlFares et al, “Vertical Partitioning for

Database Design: A Grouping Algorithm”, in

Proc. International Conference on Software

Engineering and Data Engineering (SEDE),

2007, pp. 218-223.

[8] Naser s. Barghouti and gail e. Kaiser,

"Concurrency Control in Advanced Database

Applications", ACM Computing Surveys, Vol

23, No 3, September 1991.

