

ROUGH PRIME BI - IDEAL IN SEMIRINGS

Dr. V.S.Subha

Assistant Professor, Department of Mathematics

Annamalai Unversity, Annamalainagar-608002, India, e-mail: surandsub@yahoo.com.

Abstract: In this paper we introduce the notions of rough prime bi-ideals, strongly rough prime biideals and rough irreducible bi-ideals of semirings. We have to show that the lower and upper approximations of a prime bi-ideal are also prime bi-ideals

Index terms: Prime bi-ideals Strongly rough prime bi-ideals rough irreducible bi-ideals Rough semi prime ideals, Strongly rough irreducible bi-ideals, rough irreducible bi-ideals.

1.INTRODUCTION

Semiring which are common generalization of also relative ring and distributive lattice are found in abundance around us Vandiver[22] introduced semirings. Iseki[6] introduced the notion of ideals in semirings. Shabi and Kanwal^[16] introduced prime bi-ideals in semigroups. Bashir et.al.,^[1] introduced prime bi-ideals in semirings.

The notion of rough sets was introduced by Pawlak in his papers [11-14].

Rough set theory is an extension of set theory, in which a subset of a universe is described by a pair of ordinary sets called the lower and upper approximations. Rough sets are a suitable mathematical model of vague concepts, i.e., concepts without sharp boundaries. It soon invoked a natural question concerning possible connection between rough sets and algebraic systems. The application of rough set theory in the algebraic structure was studied by many others such as Z.Bonikowaski[3], J.Pomykala[15], Y.B.Jun[8], T.Iwinski[7]. The notion of rough ideals was introduced by N.Kuroki[9]. Biswas and Nanda[2] introduced rough groups and subgroups.

R.Chinram^[4] studied Rough prime ideals in *Γ*-semigroups. Thillaigovindan and V.S.Subha [20,21] introduced rough prime bi-ideals in Γ -semigroups. V.S. Subha [17-19] introduced rough kideal and quasi-ideals in semirings. K.Osaman and B.Davvaz[5,10] discused rough ideals in rings.

2. PRELIMINARIES

In this section we reproduce some basic concept which are needed in the sequel. A semiring is a non-empty set R together with two binary operations additions $+$ and multiplication \cdot . Such that $(R,+)$ is a commutative semigroup and $(R,+)$ is a semigroup where two operations are connected by ring like distributive laws, that is $a(b + c) = ab + ac$ and (*)

Let U be a universal set. For an equivalence relation ρ on U, the st of elements of U that are related to $x \in U$, is called the equivalence class of x and is denoted by [x]. Let U/ρ denote the family of equivalence classes induced by ρ on U. U/ ρ be a partion of U such that each element of U is contained inexactly one equivalence class. A semiring R is called commutative semiring if multiplication is commutative. A nonempty subset B of a semiring R is called a subsemiring of R if for all $a, b \in B$, we have $a + b \in B$ and $ab \in B$.

A *left(resp. right)* ideal I of a semiring R is a nonempty subset of R such that $a + b \in I$ for all $a, b \in I$ and $xa \in I$ (resp. $ax \in I$) for all $a \in I$ and $x \in R$.

An *ideal* of a semiring R is a subset of R which is both a left ideal and right ideal of R. A non empty subset O be a quasi- ideal of R, we mean a subsemigroup O of R such that $RQ \cap QR \subseteq Q$.

A nonempty B of a semiring R is called *bi-ideal* of R if B is a subsemiring of R and BRB \subseteq B .

A semiring R is called *Von Neumann regular* or *simply regular* if for each $\alpha \in R$ there exists $x \in R$ such that $axa = a$.

A semiring R is called an *intra-regular* semiring if for each $a \in R$ there exist $x, y \in R$ such that $a = \sum_{i=1}^{n} x_i a^2 y_i.$

Definition 2.1.[17] Let θ be an equivalence relation on R. θ is called a *congruence relation* if $(a, b) \in \theta$ implies

(i) $(a + x, b + x) \in \theta$; (ii) $(x + a, x + b) \in \theta$; (iii) $(ax, bx) \in \theta$ and (iv) $(xa, xb) \in \theta$, for all $x \in R$. The following theorem is an immediately consequence of Definition 2.1.

Theorem 2.2.[17] Let θ be a congruence relation on a semiring R. Then (a, b) , $(c, d) \in \theta$ implies $(a + c, b + d) \in \theta$, $(ac, bd) \in \theta$ for all $a, b, c, d \in R$.

Lemma 2.3*. Let* θ *be a congruence relation on R. If* $a, b \in R$ *, then*

- (i) $[a]_{\theta} + [b]_{\theta} \subseteq [a+b]_{\theta}$
- (ii) $[a]_{{\theta}} [b]_{{\theta}} \subseteq [ab]_{{\theta}}.$

A congruence relation θ on R is called complete if $[a]_{\theta} + [b]_{\theta} = [a + b]_{\theta}$ and $[a]_{\theta}$. $[b]_{\theta} = [ab]_{\theta}$. **Theorem 2.4.** [17] Let θ and ψ be congruence relations on R and let A and B be nonempty subsets of . *Then*

- (i) $\theta(A) \subseteq A \subseteq \overline{\theta}(A)$
- (ii) $\theta(\emptyset) = \emptyset = \overline{\theta}(\emptyset)$
- (iii) $\theta(R) = R = \overline{\theta}(R)$
- (iv) $\overline{\theta}(A \cup B) = \overline{\theta}(A) \cup \overline{\theta}(B)$
- (v) $\theta(A \cap B) = \theta(A) \cap \theta(B)$
- (vi) $A \subseteq B$ implies $\theta(A) \subseteq \theta(B)$ and $\theta(A) \subseteq \theta(B)$
- (vii) $\theta(A \cup B) \supseteq \theta(A) \cap \theta(B)$
- (viii) $\overline{\theta}(A \cap B) \subseteq \overline{\theta}(A) \cap \overline{\theta}(B)$
- (ix) $\theta \subseteq \psi$ implies $\psi(A) \subseteq \theta(A)$ and $\overline{\theta}(A) \subseteq \overline{\psi}(A)$

$$
(x) \qquad (\overline{\theta \cap \psi})(A) = \overline{\theta}(A) \cap \overline{\psi}(A)
$$

(xi) $(\theta \cap \psi)(A) \subseteq \underline{\theta}(A) \cap \underline{\theta}(\psi)$

(xii)
$$
\underline{\theta}(\underline{\theta}(A)) = \underline{\theta}(A)
$$

(xiii)
$$
\theta(\theta(A)) = \theta(A)
$$

(xiv) $\overline{\theta}(\underline{\theta}(A)) = \underline{\theta}(A)$ (xv) $\qquad \underline{\theta}(\overline{\theta}(A)) = \overline{\theta}(A).$

Definition2.5.[1] A bi-ideal B of R is called a *prime bi-ideal* of R if $B_1B_2 \in B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$ for any bi-ideals B_1 , B_2 of R.

Definition2.6. [1]A bi-ideal B of R is called *strongly prime bi-ideal* of R if $B_1B_2 \cap B_2B_1 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$ for any bi-ideals B_1 , B_2 of R.

Definition2.7. [1] A bi-ideal R of R is called *semiprime bi-ideal* of R if $B^2 \subseteq B$ implies $B_1 \subseteq B$ for any bi-ideals B_1 of R.

Obviously every strongly prime bi-ideal of a semiring is prime bi-ideal and every prime biideal is semiprime bi-ideal but the converse is not true. The intersection of any family of prime biideal of a semiring is semiprime bi-ideal of *.*

Definition2.8. [1] A bi-ideal B of R is called *irreducible bi-ideal* of R if $B_1 \cap B_2 = B$ implies either $B_1 = B$ or $B_2 = B$ for any bi-ideal B_1 , B_2 of R.

Definition 2.9. [1] A bi-ideal B of R is called *Strongly irreducible bi-ideal* of R if $B_1 \cap B_2 = B$ implies either $B_1 \subseteq B$ or $B_2 \subseteq B$ for any bi-ideal B_1 , B_2 of R.

Every strongly irreducible bi-ideal of a irreducible is prime bi-ideal

3.MAIN RESULTS

 In this section we introduce rough prime bi-ideals, rough strongly prime. Bi-ideals and rough semiprime bi-idelas in semirings. Throughout paper R denoted unless otherwise mentioned the semiring

Definition 3.1 Let ρ be a congruence relation on R . A bi-ideal B of R is called *rough prime bi-ideal of* R if $\bar{\rho}(B)$ and $\rho(B)$ are prime bi-ideals of R.

A bi-ideal B of R is called *strongly rough prime bi-ideal* of R if $\bar{\rho}(B)$ and $\rho(B)$ are strongly prime biideal of *.*

A bi-ideal B of R is called *rough semi prime bi-ideal* of R if $\bar{\rho}(B)$ and $\rho(B)$ are semi prime bi-ideal of R.

Definition 3.2 .Let ρ be a congruence relation on R. A bi-ideal B of R is called *rough irreducible biideal* of R if $\bar{\rho}(B)$ and $\rho(B)$ are irreducible bi-ideal of R.

A bi-ideal B of R is called *strongly rough irreducible bi-ideal* R if $\bar{\rho}(B)$ and $\rho(B)$ are strongly rough irreducible bi-ideals of *.*

Theorem 3.3 Let ρ be a congruence relation on R. If B is a bi-ideal of R then

(i) $\bar{\rho}(B)$ is a bi-ideal of R.

(ii) $\rho(B)$ is a bi-ideal of R.

Proof: Let B be a bi-ideal of R, then $BRB \subseteq B$. (i)We have

$$
\bar{\rho}(B)R\bar{\rho}(B) = \bar{\rho}(B)\bar{\rho}(R)\bar{\rho}(B)
$$

= $\bar{\rho}(BRB)$
 $\subseteq \bar{\rho}(B)$, since *B* is a bi-ideal of *R*.

Hence $\bar{\rho}(B)R\bar{\rho}(B) \subset \bar{\rho}(B)$

Therefore $\bar{\rho}(B)$ be a bi-ideal of R.

(ii) We have

$$
\rho(B)R\rho(B) = \rho(B)\rho(R)\rho(B)
$$

= $\rho(BRB)$
 $\subseteq \rho(B)$, since *B* is a bi-ideal of *R*.

Hence $\rho(B)R\rho(B) \subseteq \rho(B)$

Therefore $\rho(B)$ be a bi-ideal of R.

Theorem 3.4. Let ρ be a congruence relation on R. If R is a prime bi-ideal of R then

- (iii) $\bar{\rho}(P)$ is a prime bi-ideal of R.
- (iv) $\rho(P)$ is a prime bi-ideal of R.

Proof. Let P be a prime bi-ideal of R. Then $P_1P_2 \subseteq P$ implies that either $P_1 \subseteq P$ or $P_2 \subseteq P$ for any biideal P_1 and P_2 of R. Since P bae bi-ideal of R. By Theorem [] $\bar{\rho}(P)$ is a bi-ideal of R. Assume that $\bar{\rho}(P_1)\bar{\rho}(P_2) \subseteq \bar{\rho}(P), \bar{\rho}(P_1) \nsubseteq \bar{\rho}(P)$ and $\bar{\rho}(P_2) \nsubseteq \bar{\rho}(P)$. Since R is a prime bi-ideal of R, P is a semiprime bi-ideal of R. Therefore $P_1 \subseteq P$ or $P_2 \subseteq P$. These implies that $\bar{\rho}(P_1) \subseteq \bar{\rho}(P)$ or $\bar{\rho}(P_2)$ $\bar{\rho}(P)$ which is a contradiction to our assumption. Hence $\bar{\rho}(P)$ is a prime bi-ideal of R.

(ii)similar to (i)

Corollary 3.5 Let ρ be a congruence relation on R and P be a prime bi-ideal of R. If $\rho(P) \neq \emptyset$ then $\rho(A)$ is rough prime bi-ideal of R.

Proof. By Theorem 3.5 $\bar{\theta}(P)$. $\theta(P)$ are prime bi-ideal of R. Hence $\rho(P)$ is a rough prime bi-ideal of R .

Theorem 3.6. Let ρ be a congruence relation on R. If P is a semiprime bi-ideal of R then

(i) $\bar{\rho}(P)$ is a semiprime bi-ideal of R.

(ii) $\rho(P)$ is a semiprime bi-ideal of R.

Proof: Straight forward.

Theorem 3.7. Let ρ be a congruence relation on R. If B is a irreducible bi-ideal of R then

- (i) $\bar{\rho}(B)$ is a irreducible bi-ideal of R.
- (ii) $\rho(B)$ is a irreducible bi-ideal of R.

Proof: Let B be the irreducibe bi-ideal of R, then for any bi-ideals B_1 , B_2 of R, $B_1 \cap B_2 = B$ implies either $B_1 = B$ or $B_2 = B$. ---------------------------(1)

(i) Consider $\bar{\rho}(B_1) \cap \bar{\rho}(B_2) = \bar{\rho}(B)$, From (1), We have $\bar{\rho}(B_1) = \bar{\rho}(B)$ and Therefore $\rho(B)$ be a irreducible bi-ideal of R.

Theorem 3.8. Every strongly irreducible semiprime bi-ideal of R is a strongly rough prime bi-ideals of R .

Proof. Let B be strongly irreducible semiprime bi-ideal of R. Since every strongly irreducible semiprime bi-ideal is irreducible semiprime bi-ideal of R. Then $\bar{\rho}(B)$ is irreducible semiprime biideal of R. Let B_1 and B_2 be any two bi-ideals of R, then $\bar{\rho}(B_1)$ and $\bar{\rho}(B_2)$ are bi-ideals of R such that $(\bar{\rho}(B_1)\bar{\rho}(B_2)) \cap (\bar{\rho}(B_2)\bar{\rho}(B_1)) \subseteq \bar{\rho}(B)$. As

 $(\bar{\rho}(B_1) \cap \bar{\rho}(B_2)) \subseteq \bar{\rho}(B)$ and $\bar{\rho}(B_1) \cap \bar{\rho}(B_2) \subseteq \rho(B_2)$, we have

 $(\bar{\rho}(B_1) \cap \bar{\rho}(B_2)) (\bar{\rho}(B_1) \cap \bar{\rho}(B_2)) = (\bar{\rho}(B_1) \cap \bar{\rho}(B_2))^{2} \subseteq \bar{\rho}(B_1) \bar{\rho}(B_2)$

Thus $(\bar{\rho}(B_1) \cap \bar{\rho}(B_2))^2 \subseteq \bar{\rho}(B_1) \bar{\rho}(B_2)$ And $(\bar{\rho}(B_1) \cap \bar{\rho}(B_2))^{2} \subseteq \bar{\rho}(B_2) \bar{\rho}(B_1)$. This implies $(\bar{\rho}(B_1) \cap \bar{\rho}(B_2))^2 \subseteq \bar{\rho}(B_1) \bar{\rho}(B_2) \cap \bar{\rho}(B_2) \bar{\rho}(B_1) \subseteq \bar{\rho}(B)$.

Since $\bar{\rho}(B_1)$ \cap $\bar{\rho}(B_2)$ is a bi-ideal and $\bar{\rho}(B)$ is a semiprime bi-ideal of R,

we have $(\bar{\rho}(B_1) \cap \bar{\rho}(B_2)) \subseteq \bar{\rho}(B)$.

Since $\bar{\rho}(B)$ is strongly irreducible, we have $\bar{\rho}(B_1) \subseteq \bar{\rho}(B)$ or $\bar{\rho}(B_2) \subseteq \bar{\rho}(B)$. This shows that $\bar{\rho}(B)$ is a strongly prime bi-ideal of R.

Similarly we prove $\rho(B)$ is a strongly prime bi-ideal of R.

Hence $\rho(B)$ is a strongly rough prime bi-ideal of R.

Theorem3.9. Let ρ be a congruence relation on R and let B be a bi-ideal of R and $b \in R$ such that $b \notin B$. Then there exists a rough irreducible bi-ideal $\rho(I)$ of R such that $\rho(B) \subseteq \rho(I)$ and $b \notin \rho(I)$.

Proof.

Let B be a bi-ideal of R. Then by Theorem 3.3, $\bar{\rho}(B)$ is a a bi-ideal of R. Let X be the collection of all bi-ideal of R, which contains $\bar{\rho}(B)$ but does not contain b, since $\bar{\rho}(B) \in X$, X is nonempty. The collection A is a partially ordered set under inclusion.

If Y is any totally ordered subset of X, then the union of all the subset in Y is a bi-ideal of R containing B and $b \notin Y$.

Hence by Zorn's Lemma there exists a maximal element $\bar{\rho}(I)$ in X. We show that $\bar{\rho}(I)$ is an irreducible bi-ideal of R .

Let $\bar{\rho}(L)$ and $\bar{\rho}(M)$ be two bi-ideals of R. Such that $\bar{\rho}(I) = \bar{\rho}(L) \cap \bar{\rho}(M)$. If both $\bar{\rho}(L)$ and $\bar{\rho}(M)$ properly contain $\bar{\rho}(I)$, then $b \in \bar{\rho}(L)$ and $b \in \bar{\rho}(M)$. Thus $b \in \bar{\rho}(L) \cap \bar{\rho}(M) = \bar{\rho}(I)$. This contradicts the fact that $b \notin \bar{\rho}(I)$ thus either $\bar{\rho}(I) = \bar{\rho}(L)$ or $\bar{\rho}(I) = \bar{\rho}(M)$.

Hence $\bar{\theta}(I)$ is irreducible bi-ideal of R.

Similarly we prove $\rho(I)$ is a prime bi-ideal of R.

Thus $\rho(I)$ is a rough irreducible bi-ideal of R.

Theorem.3.10. For the semiring R , the following condition are equivalent.

- i) R is both regular and intra-regular
- ii) $\rho(B)^2 = \rho(B)$ for every bi-ideal B of
- iii) $\rho(B_1)\rho(B_2) \cap \rho(B_2)\rho(B_1) = \rho(B_1) \cap \rho(B_2)$ for any bi-ideals B_1 , B_2 of R.
- iv) Each bi-ideal of R is rough semiprime.
- v) Each proper bi-ideal of R is the intersection of irreducible semiprime bi-ideal of R which contain it.

Proof.

(i) \Rightarrow (ii) Let R be both regular and intra-regular and B be a bi-ideal of R. $\bar{\rho}(B)$ is a bi-ideal of R. Then $(\bar{\rho}(B))^2 \subseteq \bar{\rho}(B)$ let $a \in \bar{\rho}(B)$. Since R is regular, there exists $x, y, z \in R = \bar{\rho}(R)$ such that $a x a$ and $\sum_{i=1}^n y_i aa z_i)$

 $=\sum_{i=1}^n a(xy)_i a a(z_i x) a \in \bar{\rho}(B) R \bar{\rho}(B) \bar{\rho}(B) R \bar{\rho}(B) = \bar{\rho}(BRB) \bar{\rho}(BRB) \subseteq \bar{\rho}(B) \bar{\rho}(B) = \bar{\rho}(B)^2$ Thus $\bar{\rho}(B) \subseteq (\bar{\rho}(B))^2$.

Hence $\bar{\rho}(B) = (\bar{\rho}(B))^2$ for every bi-ideal B of R.

Similarly $\bar{\rho}(B) = (\bar{\rho}(B))^2$ for every bi-ideal of R.

Therefore $(\bar{\rho}(B))^2 = \rho(B)$.

(ii) \Rightarrow (i) Let Q be a quasi-ideal of R, then Q is a bi-ideal of R. By Theorem 3.3, $\bar{p}(Q)$ is a bi-ideal of R. By hypothesis $(\bar{\rho}(Q))^2 = \bar{\rho}(Q)$. Thus R is both regular and intra regular semiring.

(ii) \Rightarrow (iii) Let B_1, B_2 be any two bi-ideals of R. By Theorem 3.3, $\bar{\rho}(B_1)$ and $\bar{\rho}(B_2)$ are bi-ideal of and $\bar{\rho}(B_1) \cap \bar{\rho}(B_2)$ is also a bi-ideal of R.

By hypothesis $\bar{\rho}(B_1) \cap \bar{\rho}(B_2) = (\bar{\rho}(B_1) \cap \bar{\rho}(B_2))^2$ $= (\bar{\rho}(B_1) \cap \bar{\rho}(B_2)) (\bar{\rho}(B_1) \cap \bar{\rho}(B_2))$ $\bar{\rho}(B_2)$ Similarly) $\cap \bar{\rho}(B_2) \subseteq \bar{\rho}(B_2) \bar{\rho}(B_1)$. Hence) \cap $\bar{\rho}(B_2) \subseteq (\bar{\rho}(B_1) \bar{\rho}(B_2)) \cap (\bar{\rho}(B_2) \bar{\rho}(B_1)).$ Since $\bar{\rho}(B_1)$ $\bar{\rho}(B_2)$ and $\bar{\rho}(B_2)$ $\bar{\rho}(B_1)$ are bi-ideals of R. We have $(\bar{\rho}(B_1) \bar{\rho}(B_2)) \cap (\bar{\rho}(B_2) \bar{\rho}(B_1))$ is also a bi-ideal of R.

Then by hypothesis

$$
(\bar{\rho}(B_1)\bar{\rho}(B_2)) \cap (\bar{\rho}(B_2)\bar{\rho}(B_1)) =
$$

$$
(\bar{\rho}(B_1)\bar{\rho}(B_2)) \cap (\bar{\rho}(B_2)\bar{\rho}(B_1)) (\bar{\rho}(B_1)\bar{\rho}(B_2)) \cap
$$

) $\bar{\rho}(B_2)$) $(\bar{\rho}(B_2)$ $\bar{\rho}(B_1)$ $(\bar{\rho}(B_2))^{2} \bar{\rho}(B_1)$ $\bar{\rho}(B_2)\bar{\rho}(B_1)$ $R \bar{\rho}(B_1)$ $\subseteq \bar{\rho}(B_1)$

 $(\bar{\rho}(B_2) \bar{\rho}(B_1))$

© **UNIVERSAL RESEARCH REPORTS | REFEREED | PEER REVIEWED ISSN : 2348 - 5612 | Volume : 05 , Issue : 04 | January – March 2018**

Similarly $(\bar{\rho}(B_1) \bar{\rho}(B_2)) \cap (\bar{\rho}(B_2) \bar{\rho}(B_1)) \subseteq \bar{\rho}(B_2)$ Hence $(\bar{\rho}(B_1) \bar{\rho}(B_2)) \cap (\bar{\rho}(B_2) \bar{\rho}(B_1)) = \bar{\rho}(B_1) \cap \bar{\rho}(B_2)$ It is also true for the bi-ideals of $\rho(B_1)$ and $\rho(B_2)$. There fore $(\bar{\rho}(B_1) \bar{\rho}(B_2)) \cap (\bar{\rho}(B_2) \bar{\rho}(B_1)) = \bar{\rho}(B_1) \cap \bar{\rho}(B_2)$ (iii) \Rightarrow (iv) Let B be the bi-ideal of R. We know that $\overline{\rho}(B)$ is a bi-ideal of R such that $(\bar{\rho}(B_1))^2 \subseteq \bar{\rho}(B)$ for any bi-ideal B_1 of R. Then by hypothesis, we have) = $\bar{\rho}(B_1) \cap \bar{\rho}(B_1)$ $= (\bar{\rho}(B_1) \bar{\rho}(B_1)) \cap (\bar{\rho}(B_1) \bar{\rho}(B_1))$

$$
= (\bar{\rho}(B_1))^2 \subseteq \bar{\rho}(B)
$$

Which show that $\bar{\rho}(B)$ is a semiprime bi-ideal of R.

Similarly we prove $\rho(B)$ is a semiprime bi-ideal of R.

Therefore $\rho(B)$ is a rough semiprime ideal of R.

(iv) \Rightarrow (v) Let B be a proper bi-ideal of R. By Theorem 3.3 $\bar{\rho}(B)$ is a proper bi-ideal of R. Then $\bar{\rho}(B)$ is contained into the intersection of all irreducible bi-ideal of R which contains $\bar{\rho}(B)$. For the reverse inclusion let $a \in \overline{\rho}(B)$. Then by Theorem [3.9] there exists an irreducible bi-ideal which contain $\overline{\rho}(B)$ does not contain a. This shows that $\bar{\rho}(B)$ is the intersection of all irreducible semiprime bi-ideal of R which contain it. Similarly $\rho(B)$ is the intersection of all irreducible semiprime bi-ideals of R.

Hence each proper bi-ideal of R is the intersection of irreducible rough semiprime bi-ideal of R which contain it.

(v) \Rightarrow (ii) Let B be a bi-ideal of R. By Theorem $\bar{\rho}(B)$ is a bi-ideal of R. Then $(\bar{\rho}(B))^2$ is also a biideal of R .

Thus by hypothesis $(\bar{\rho}(B))^2 = \cap_{\alpha}$ ² $\bar{\rho}$

Since each B_{α} is semiprime, we have $\bar{\rho}(B) \subseteq \bar{\rho}(B_{\alpha})$. Thus $\bar{\rho}(B) \subseteq \cap \bar{\rho}(B_{\alpha}) = (\bar{\rho}(B))^{2}$, but

 $(\bar{\rho}(B))^2 \subseteq \bar{\rho}(B)$ always holds.

Hence $(\bar{\rho}(B))^2 = \bar{\rho}(B)$ for each bi-ideal of R.

A similar proof is holds for bi-ideal $\rho(B)$ of R. Hence $(\bar{\rho}(B))^2$ =

Theorem3.11. Let R be regular and intra-regular semiring then the following assertions are equivalents for a bi-ideal B of R

(i) $\rho(B)$ is strongly rough irreducible

(ii) $\rho(B)$ is strongly rough prime

Proof.

(i) \Rightarrow (ii) Let B be bi-ideal of R, then $\bar{\rho}(B)$ is a bi-ideal of R. By Theorem [] $\bar{\rho}(B)$ is semiprime, since $\bar{\theta}(B)$ is strongly irreducible, by Theorem [3.6], $\bar{\rho}(B)$ is strongly prime bi-ideal of R.

The proof of $\rho(B)$ is strongly prime bi-ideal of R is similar. Thus $\rho(B)$ is strongly rough prime biideal of R .

(ii) \Rightarrow (i) Let B be strongly prime bi-ideal of R and let B_1 and B_2 be any two bi-ideals of R. Then $\rho(B_1)$ and $\rho(B_2)$ are also bi-ideals of R such that $\bar{\rho}(B_1) \cap \bar{\rho}(B_2) \subseteq \bar{\rho}(B)$. Since R is regular and intra-regular by Theorem []

 $(\bar{\rho}(B_1) \bar{\rho}(B_2)) \cap (\bar{\rho}(B_2) \bar{\rho}(B_1)) = \bar{\rho}(B_1) \cap \bar{\rho}(B_2) \subseteq \bar{\rho}(B).$ Thus by hypothesis, we have $\bar{\rho}(B_1) \subseteq \bar{\rho}(B)$ or $\bar{\rho}(B_2) \subseteq \bar{\rho}(B)$.

Hence $\bar{\rho}(B)$ is strongly irreducible.

Similarly we prove $\rho(B)$ is strongly irreducible.

Hence $\rho(B)$ is strongly rough irreducible.

CONCLUSION.

The theory of semirings and theory of rough sets have many application in various fields. Results of rough prime bi-ideals in Γ -semigroup can be extended to the general setting of semirings. We have bi-ideal introduced the notion of rough semiprime and rough irreducible bi-ideal of a semiring. The definition and results can be extended to other algebraic structures such as rings and modules.

REFERENCES

- 1) S. Bashir, J. Mehmood, M. Shabir, Prime bi-ideals and prime fuzzy bi-ideals in Semirings, World applied Sciences Journal, 22, (2013), pp. 106-121.
- 2) R. Biswas and S. Nanda, *Rough groups and rough subgroups*, Bulietin polish Academy Science Mathematics 42(1994) 251-254.
- 3) Z. Bonikowaski, *Algebraic structures of rough sets,*in: W.P.Ziarko(Ed), Rough Sets, Fuzzy Sets And Knowledge Discovery, Springer-Verlag, Berlin, 1995,pp 242-247.
- 4) R. Chinram, Rough prime ideals and rough fuzzy prime ideals in Γ semigroups Communication of the Koren Mathematical Society,24(3)(2009)341-351.
- 5) B. Davvaz, Roughness in rings, Information Sciences, 164, (2004), pp. 147-163.
- 6) K. Ise'ki, Ideals in semirings, Proceedings of the Japan Academy, 34(1), (1958), 29-31.
- 7) T. Iwinski, *Algebraic approach to rough sets*, Bull. Polish. Acad. Sci. and Math. 35(1987), 673-683.
- 8) Y.B. Jun, *Roughness of Gamma-subsemigroup and ideals in* Γ *-semigroup*, Bulletin of Korean Mathematical Society, 40(3) (2003), 531-536.
- 9) N. Kuroki, *Rough Ideals in semigroups*, Information Sciences, 100(1997), 130-163.
- 10) K. Osaman and B. Dauvaz, On the structure of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in commutative rings, Information Sciences, 178(5), (2008), pp. 1343- 1354.
- 11) Z. Pawlak, *Rough sets*, International Journal of Information Computer Science, 11 (1982) 341-356.dgji
- 12) Z. Pawlak, *Rough sets and fuzzy sets*, Fuzzy sets and systems, 17(1)(1985)99-102.
- 13) Z. Pawlak and A.Showron, *Rough sets:some extensions*, Information Sciences, 177(1) (2007) 28-40.
- 14) Z. Pawlak, *Rough sets-Theoretical aspects of reasoning about data*, Kuluwer Academic publishers, Dordrecht(1991).
- 15) J. Pomykala, J.A. Pomykala, The stone algebra of roughsets, Bull. Polish. Acad. Sci. Math. 36(1998)
- 16) M. Shabir and N. Kanwal, Prime bi-ideals of semigroups, Southeast Asian Bulletin of Mathematics, 31, (2007), pp. 757-764.
- 17) V.S.Subha, *Rough k-ideals in Semirings*, International Journal of Research Publication & Seminar, 5, Issue 1 March, 2014, 117-126
- 18) V.S.Subha*, Rough Quasi-ideals in Regular Semirings*, International Journal of Research Publication & Seminar, Volume 06 (01), February, 2015, 116-123.
- 19) V.S. Subha, *Rough Prime ideals in in -semirings,* Universal research reports , Volume 4, Issue 6, July- September 2017, 149-155.

© **UNIVERSAL RESEARCH REPORTS | REFEREED | PEER REVIEWED ISSN : 2348 - 5612 | Volume : 05 , Issue : 04 | January – March 2018**

- 20) N. Thillaigovindan, V. Chinnadurai and V.S. Subha, *Rough ideals in* Γ*- semigroups*, International Journal of Algebra,Vol. 6, 2012, no. 14, 651-661.
- 21) N. Thillaigovindan, V.S. Subha, *Rough prime bi-ideals in* Γ *- semigroups*, The Journal of Fuzzy mathematics, Vol 23, No 1, 189-197, 2015.
- 22) H.S. Vandiver, *Note On A Simple Type Of Algebra In Which The Cancellation Law Of Addition Does Not Hold*, Bulletin American Mathematical Society, (1934), pp. 916-920.