Investigating the catalytic mechanisms of key metabolic enzymes

Authors

  • Shreya Sood shreya.sood0203@gmail.com

DOI:

https://doi.org/10.36676/urr.v11.i2.14

Keywords:

molecular mechanisms, catalytic mechanisms, metabolic enzymes, biological catalysts

Abstract

The fundamental idea behind enzyme catalysis is to increase the pace of a process by lowering its activation energy. Enzymes accomplish this by creating an enzyme-substrate complex by binding substrates in their active areas. This binding stabilizes the reaction's transition state through a variety of non-covalent interactions, including hydrogen bonds, ionic interactions, and Van der Waals forces. The energy barrier that needs to be broken through for the reaction to continue is lowered by this stabilization.

References

• Bugg, T. D. (2003). Dioxygenase enzymes: catalytic mechanisms and chemical models. Tetrahedron, 59(36), 7075-7101.

• Huang, Y., Ren, J., & Qu, X. (2019). Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chemical reviews, 119(6), 4357-4412.

• Iverson, T. M. (2013). Catalytic mechanisms of complex II enzymes: a structural perspective. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1827(5), 648-657.

• Mazet, F., & Shimeld, S. M. (2002). Gene duplication and divergence in the early evolution of vertebrates. Current opinion in genetics & development, 12(4), 393-396.

• Tzika, E., Dreker, T., & Imhof, A. (2018). Epigenetics and metabolism in health and disease. Frontiers in genetics, 9, 410886.

• Fersht, A. (2017). Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. World Scientific Publishing Company.

• Nelson, D. L., Cox, M. M. (2017). Lehninger Principles of Biochemistry. W.H. Freeman.

• Voet, D., Voet, J. G. (2016). Biochemistry. John Wiley & Sons.

• Berg, J. M., Tymoczko, J. L., Gatto, G. J., Stryer, L. (2015). Biochemistry. W.H. Freeman.

• Walsh, C. (2001). Enabling the chemistry of life. Nature, 409(6817), 226-231.

• Richards, F. M., Wyckoff, H. W. (1971). Structural and catalytic properties of enzymes. Annual Review of Biochemistry, 40(1), 691-714.

• Cleland, W. W. (1975). Mechanisms of enzyme-catalyzed reactions. Annual Review of Biochemistry, 44(1), 497-522.

• Hammes-Schiffer, S. (2002). Theoretical perspectives on proton-coupled electron transfer reactions. Accounts of Chemical Research, 34(4), 273-281.

• Lipscomb, W. N., Sträter, N. (1996). Recent advances in zinc enzymology. Chemical Reviews, 96(7), 2375-2433.

• Kraut, D. A., Carroll, K. S., Herschlag, D. (2003). Challenges in enzyme mechanism and energetics. Annual Review of Biochemistry, 72(1), 517-571.

• Berg, J. M., Tymoczko, J. L., & Stryer, L. (2015). Biochemistry. W.H. Freeman.

• Bugg, T. D. H. (2012). Introduction to Enzyme and Coenzyme Chemistry. Wiley-Blackwell.

• Copeland, R. A. (2000). Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis. Wiley-VCH.

• Fersht, A. (1999). Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. W.H. Freeman.

• Garrett, R. H., & Grisham, C. M. (2013). Biochemistry. Brooks/Cole Cengage Learning.

• Hammes, G. G. (2002). Multiple conformational changes in enzyme catalysis. Biochemistry, 41(24), 8221-8228.

• Hemsworth, G. R., Davies, G. J., & Walton, P. H. (2013). Recent insights into copper-containing lytic polysaccharide mono-oxygenases. Current Opinion in Structural Biology, 23(5), 660-668.

• Horton, H. R., Moran, L. A., Ochs, R. S., Rawn, J. D., & Scrimgeour, K. G. (2012). Principles of Biochemistry. Pearson.

• Jencks, W. P. (1987). Catalysis in Chemistry and Enzymology. Dover Publications.

• Knowles, J. R. (1980). Enzyme-catalyzed phosphoryl transfer reactions. Annual Review of Biochemistry, 49(1), 877-919.

• Kuriyan, J., Konforti, B., & Wemmer, D. (2012). The Molecules of Life: Physical and Chemical Principles. Garland Science.

• Laidler, K. J., Bunting, P. S. (1973). The Chemical Kinetics of Enzyme Action. Oxford University Press.

• Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2008). Lehninger Principles of Biochemistry. W.H. Freeman.

• Northrop, D. B. (2001). Follow the protons: a low-barrier hydrogen bond unifies the mechanisms of the serine proteases. Accounts of Chemical Research, 34(9), 790-797.

• Petsko, G. A., & Ringe, D. (2004). Protein Structure and Function. New Science Press.

• Segel, I. H. (1993). Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. Wiley Classics Library.

• Voet, D., & Voet, J. G. (2011). Biochemistry. Wiley.

• Warshel, A., Sharma, P. K., Kato, M., Xiang, Y., Liu, H., & Olsson, M. H. (2006). Electrostatic basis for enzyme catalysis. Chemical Reviews, 106(8), 3210-3235.

• Whitford, D. (2005). Proteins: Structure and Function. Wiley-Blackwell.

• Wilcox, P. E. (1970). Enzyme Structure and Mechanism. Harper and Row.

• Website: http://hyperphysics.phy-astr.gsu .edu/hbase/Organic/rubisco.html

• Website: https://www.khanacademy.org/ science/ap-biology/cellular -energetics/enzyme-structure-and-catalysis/a/ enzymes-and-the-active-site

Downloads

Published

2024-06-06
CITATION
DOI: 10.36676/urr.v11.i2.14
Published: 2024-06-06

How to Cite

Shreya Sood. (2024). Investigating the catalytic mechanisms of key metabolic enzymes. Universal Research Reports, 11(2), 119–145. https://doi.org/10.36676/urr.v11.i2.14