One pot facile synthesis of flavanoidal oxadiazinanones: In vitro antibacterial activity, docking and MD simulation using DNA gyrase
DOI:
https://doi.org/10.36676/urr.v10.i1.1297Keywords:
Flavanones, structure, stereoisomeric, bioactive properties, biologicalAbstract
Flavanones are commonly spread in nature because they are essential intermediates in the biosynthetic flavonoid pathway1 and are of therapeutic significance because of their broad variety of biological activities such as hypertensive, antifungal, antibacterial, and antitumor activities2. Therefore, the field of flavanones is of numerous attentions to medicinal chemists for drug discovery. Flavanones have a 2,3- dihydro skeleton in the C6-C3-C6 structure of the flavonoid and do not have a double bond between C2 and C3, (Fig. 1) which renders them chiral in the C2 position3 hence two stereoisomeric forms of each flavanone are possible4. The chirality means that the B-ring is distorted compared to the A-C rings and is not planar. Such a disparity in molecular orientation is of considerable importance as it may influence how flavonoids engage with biological receptors and their bioactive properties5,6.
References
R. E. Koes, F. Quattrocchio and J. N. M. Mol, BioEssays, 1994, 16, 123–132.
Y. Wang, W. Tan, W. Z. Li and Y. Li, J. Nat. Prod., 2001, 64, 196–199.
T. Iwashina, J. Plant Res., 2000, 113, 287–299.
A. B. Das, V. V. Goud and C. Das, in Value-Added Ingredients and Enrichments of Beverages, Elsevier, 2019, 285–323.
S. Agah, H. Kim, S. U. Mertens-Talcott and J. M. Awika, Mol. Nutr. Food Res., 2017, 61, 1600625.
L. Yang, C. D. Allred and J. M. Awika, Cereal Foods World, 2014, 59, 244– 251.
K. R. E. Ranganarendar, M. Afzal, Indian J. Chem., 2005, 44B, 376–380.
H. Elokdah, T. S. Sulkowski, M. Abou-Gharbia, J. A. Butera, S.-Y. Chai, G. R. McFarlane, M.-L. McKean, J. L. Babiak, S. J. Adelman and E. M. Quinet, J. Med. Chem., 2004, 47, 681–695.
J. Zukerman-Schpector, L. Sousa Madureira, A. Rodrigues, E. Vinhato and P.
R. Olivato, Acta Crystallogr. Sect. E Struct. Reports Online, 2009, 65, o1468– o1468.
S. R. Hitchcock, G. P. Nora, D. M. Casper, M. D. Squire, C. D. Maroules, G.
M. Ferrence, L. F. Szczepura and J. M. Standard, Tetrahedron, 2001, 57, 9789– 9798.
M. Parveen, A. Ali, M. Alam, A. U. Khan and A. Ahmad, Med. Chem. Res., 2013, 22, 3085–3095.
A. Rodrigues, P. Olivato and R. Rittner, Synthesis (Stuttg)., 2005, 2005, 2578–
2582.
M. Brvar, A. Perdih, M. Renko, G. Anderluh, D. Turk and T. Solmajer, J. Med. Chem., 2012, 55, 6413–6426.
Sultanat, A. Ansari, M. Qamar, Shafiullah, S. Tabassum and F. A. Ansari,
Curr. Org. Synth., 2021, 18, 411–417.
A. M. Vijesh, A. M. Isloor, S. Telkar, T. Arulmoli and H.-K. Fun, Arab. J. Chem., 2013, 6, 197–204.
Pillai, A.S. (2022) Multi-Label Chest X-Ray Classification via Deep Learning. Journal of Intelligent Learning Systems and Applications, 14, 43-56. https://doi.org/10.4236/jilsa.2022.144004
R. D. Taylor, P. J. Jewsbury and J. W. Essex, J. Comput. Aided. Mol. Des., 2002, 16, 151–66.
J. Gelpi, A. Hospital, R. Goñi and M. Orozco, Adv. Appl. Bioinforma. Chem.,
2015, 37.
B. M. Collett, Wood Fiber, 1970, 2, 113–33.
A. Sultanat, Ali, M. Asif, A. Rizvi, M. Farhan and S. Zaman, J. Taibah Univ. Sci., 2019, 13, 536–546.
Y. Wen, W. Huang, B. Wang, J. Fan, Z. Gao and L. Yin, Mater. Sci. Eng. B, 2012, 177, 619–624.
A. U. Khan and P. Nordmann, Scand. J. Infect. Dis., 2012, 44, 531–535.
J. M. Andrews, J. Antimicrob. Chemother., 2001, 48, 5–16.
P. Wayne, Clin. Lab. Stand. Inst., 2014, M100-S24.
A. Ali, D. Gupta, G. Srivastava, A. Sharma and A. U. Khan, J. Biomol. Struct. Dyn., 2019, 37, 2061–2071.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Universal Research Reports
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.