Deep Reinforcement Learning in Autonomous Vehicles: An Indian Perspective
DOI:
https://doi.org/10.36676/urr.v8.i4.1405Keywords:
Deep Reinforcement Learning, Autonomous Vehicles, Indian TrafficAbstract
This paper explores the application of Deep Reinforcement Learning (DRL) in developing autonomous vehicles within the Indian context. India presents a unique challenge for autonomous systems due to its complex traffic conditions, varied road infrastructures, and lack of standardized traffic rules. The study analyzes how DRL can be utilized to train autonomous vehicles to navigate these environments effectively. Techniques such as Deep Q-Networks (DQNs) and Proximal Policy Optimization (PPO) are discussed with case studies on simulation environments. The research further examines the potential economic and societal impacts of autonomous vehicles in India, focusing on scalability, affordability, and adaptation to local conditions
References
Vasa, Y. (2021b). Robustness and adversarial attacks on generative models. International Journal for Research Publication and Seminar, 12(3), 462–471. https://doi.org/10.36676/jrps.v12.i3.1537
Katikireddi, P. M., Singirikonda, P., & Vasa, Y. (2021). Revolutionizing DEVOPS with Quantum Computing: Accelerating CI/CD pipelines through Advanced Computational Techniques. Innovative Research Thoughts, 7(2), 97–103. https://doi.org/10.36676/irt.v7.i2.1482
Vasa, Y. (2021b). Quantum Information Technologies in cybersecurity: Developing unbreakable encryption for continuous integration environments. International Journal for Research Publication and Seminar, 12(2), 482–490. https://doi.org/10.36676/jrps.v12.i2.1539
Singirikonda, P., Jaini, S., & Vasa, Y. (2021). Develop Solutions To Detect And Mitigate Data Quality Issues In ML Models. NVEO - Natural Volatiles & Essential Oils, 8(4), 16968–16973. https://doi.org/https://doi.org/10.53555/nveo.v8i4.5771
Vasa, Y. (2021). Develop Explainable AI (XAI) Solutions For Data Engineers. NVEO - Natural Volatiles & Essential Oils, 8(3), 425–432. https://doi.org/https://doi.org/10.53555/nveo.v8i3.5769
Vasa, Y., Jaini, S., & Singirikonda, P. (2021). Design Scalable Data Pipelines For Ai Applications. NVEO - Natural Volatiles & Essential Oils, 8(1), 215–221. https://doi.org/https://doi.org/10.53555/nveo.v8i1.5772
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Universal Research Reports
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.