Cloud Security in Indian FinTech: A Machine Learning Approach to Risk Mitigation
DOI:
https://doi.org/10.36676/urr.v8.i4.1412Keywords:
Cybersecurity, Deep Learning, Convolutional Neural NetworksAbstract
As India's FinTech sector grows, so do the security challenges associated with cloud-based financial services. This paper investigates how machine learning algorithms can be utilized to enhance cloud security in Indian FinTech companies. The study evaluates the performance of various ML models, such as Random Forest and Gradient Boosting, in detecting security threats like identity theft, account takeover, and payment fraud. The research highlights the need for real-time threat detection systems that comply with Indian regulatory frameworks, such as the Payment and Settlement Systems Act. Case studies of prominent Indian FinTech companies that have implemented ML-based security systems are also presented.
References
Vasa, Y. (2021b). Robustness and adversarial attacks on generative models. International Journal for Research Publication and Seminar, 12(3), 462–471. https://doi.org/10.36676/jrps.v12.i3.1537
Katikireddi, P. M., Singirikonda, P., & Vasa, Y. (2021). Revolutionizing DEVOPS with Quantum Computing: Accelerating CI/CD pipelines through Advanced Computational Techniques. Innovative Research Thoughts, 7(2), 97–103. https://doi.org/10.36676/irt.v7.i2.1482
Vasa, Y. (2021b). Quantum Information Technologies in cybersecurity: Developing unbreakable encryption for continuous integration environments. International Journal for Research Publication and Seminar, 12(2), 482–490. https://doi.org/10.36676/jrps.v12.i2.1539
Singirikonda, P., Jaini, S., & Vasa, Y. (2021). Develop Solutions To Detect And Mitigate Data Quality Issues In ML Models. NVEO - Natural Volatiles & Essential Oils, 8(4), 16968–16973. https://doi.org/https://doi.org/10.53555/nveo.v8i4.5771
Vasa, Y. (2021). Develop Explainable AI (XAI) Solutions For Data Engineers. NVEO - Natural Volatiles & Essential Oils, 8(3), 425–432. https://doi.org/https://doi.org/10.53555/nveo.v8i3.5769
Vasa, Y., Jaini, S., & Singirikonda, P. (2021). Design Scalable Data Pipelines For Ai Applications. NVEO - Natural Volatiles & Essential Oils, 8(1), 215–221. https://doi.org/https://doi.org/10.53555/nveo.v8i1.5772
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Universal Research Reports
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.