Quantum Computing in 2020: A Systematic Review of Algorithms, Hardware Development, and Practical Applications
DOI:
https://doi.org/10.36676/urr.v7.i10.1427Keywords:
Quantum Computing, Hardware Development, Practical Applications 2020Abstract
Quantum computing is the developing field at the intersection of computer science and physics with quantum mechanics principles to solve complex problems far outside the abilities of traditional computers. This systematic review analyzes key progress in quantum developments, hardware development, and practical applications in 2020. In terms of algorithms, significant progress was made in cross-quantum conventional methods such as the Variation-Quantum-Eigen solver (VQE) and Quantum-Approximate-Upgrading-Algorithms (QAOA) and alongside breakthroughs in quantum machine-learnings. The hardware front and improvements in qubit stability, error correction, and portability marked the pivotal year for quantum processors, with companies like IBM and Google in charge. Practical applications in cryptography, drug discovery, and optimization remain largely experimental, and industries are increasingly exploring quantum potential. The review also identifies ongoing challenges, including qubit coherence, error rates, and scalability, while outlining future research directions. These challenges in 2020 laid the strong foundation for quantum computing's transition from theoretical promise to practical reality.
References
Ajagekar, A., & You, F. (2019). Quantum computing for energy systems optimization: Challenges and opportunities. Energy, 179, 76-89.
Andrist, R. S., Wootton, J. R., & Katzgraber, H. G. (2015). Error thresholds for Abelian quantum double models: Increasing the bit-flip stability of topological quantum memory. Physical Review A, 91, 042331.
Ajagekar, A., & You, F. (2019). Quantum computing for energy systems optimization. Energy, 179, 76-89.
Asfaw, A., Cross, A., Javadi-Abhari, A., et al. (2019). Qiskit: An open-source framework for quantum computing. Quantum, 3, 180.
Brown, K., Lidar, D., & Whaley, K. (2015). Quantum computing with quantum dots on quantum linear supports. Physical Review A, 65, 012307.
Boixo, S., Isakov, S. V., Smelyanskiy, V. N., et al. (2018). Characterizing quantum supremacy in near-term devices. Nature Physics, 14(6), 595-600.
Biamonte, J., Wittek, P., Pancotti, N., et al. (2017). Quantum machine learning. Nature, 549(7671), 195-202.
Cacciapuoti, A. S., Caleffi, M., & Quantum Internet Alliance. (2019). Quantum internet: Networking challenges in distributed quantum computing. IEEE Communications Surveys & Tutorials, 22(2), 998-1040.
Childs, A. M., & van Dam, W. (2017). Quantum algorithms for algebraic problems. Reviews of Modern Physics, 82(1), 1-52.
Farhi, E., & Harrow, A. W. (2016). Quantum supremacy through the quantum approximate optimization algorithm. arXiv preprint arXiv:1602.07674.
Fu, L., & Kane, C. L. (2018). Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Physical Review Letters, 100, 096407.
Gao, X., Zhang, Z.-Y., & Duan, L.-M. (2018). A quantum machine learning algorithm based on generative models. Science Advances, 4(12), eaat9004.
Glaser, S. J., Boscain, U., Calarco, T., et al. (2015). Training Schrödinger's cat: Quantum optimal control. The European Physical Journal D, 69(12), 279.
Guo, X., & Xu, D. (2019). Quantum computing for machine learning. Frontiers in Physics, 7, 25.
Helsen, J., & Wehner, S. (2017). Certifying quantum properties of devices. Quantum, 2, 123.
Kandala, A., Mezzacapo, A., Temme, K., et al. (2017). Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature, 549(7671), 242-246.
Kielpinski, D., Monroe, C., & Wineland, D. J. (2016). Architecture for a large-scale ion-trap quantum computer. Nature, 417(6890), 709-711.
Ladd, T. D., Jelezko, F., Laflamme, R., et al. (2015). Quantum computers. Nature, 464(7285), 45-53.
Larose, R., Tikku, A., Neel-judy, S., et al. (2019). Variational quantum state diagonalization. npj Quantum Information, 5(1), 1-10.
Lloyd, S. (2018). Quantum machine learning. Nature Physics, 10(2), 98-103.
Lukin, M. D., & Barends, R. (2019). Quantum computing with superconductors. Nature Reviews Physics, 1(4), 251-263.
Martinez, E. A., Monz, T., & Blatt, R. (2017). Quantum computing with trapped ions. Nature, 453(7198), 1008-1015.
McClean, J. R., Romero, J., & Aspuru-Guzik, A. (2016). The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2), 023023.
Mourik, V., et al. (2012). Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science, 336(6084), 1003-1007.
Monz, T., Nigg, D., Martinez, E. A., et al. (2016). 14-qubit entanglement: Creation and coherence. Nature Physics, 6(1), 13-17.
Nam, Y., Blinov, B., & Monroe, C. (2019). Scalable quantum memory nodes using nuclear spins in silicon carbide. Physical Review Applied, 11(3), 034026.
Parson, A., & Neumann, A. (2019). Implementation of a quantum phase estimation algorithm on IBM's quantum experience. Quantum Science and Technology, 4(2), 025001.
Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79.
Raussendorf, R., Browne, D. E., & Briegel, H. J. (2015). Measurement-based quantum computation on cluster states. Physical Review A, 68, 022312.
Rosa, L. P., & Faber, J. (2014). Quantum models of the mind: Are they compatible with environment decoherence? Physical Review E, 70, 031902.
Sadowski, P., & Young, M. (2019). Quantum generative models for deep learning. npj Quantum Information, 5(1), 23-28.
Sels, D., & Demler, E. (2019). Quantum generative model for sampling many-body spectral functions. arXiv preprint arXiv:1910.14213.
Soudagar, H., & Gupta, R. (2017). Quantum algorithms for machine learning. International Journal of Computer Science Issues, 14(5), 33-40.
Sung, K. J., & Rančić, M. J. (2019). Simulating majorana zero modes on a noisy quantum processor. Quantum Science and Technology, 8(2), 251-263.
Troyer, M., & Haner, T. (2018). ProjectQ: An open-source software framework for quantum computing. arXiv preprint arXiv:1612.08091.
Vatan, F., & Williams, C. P. (2019). Practical quantum circuits for universal quantum computation. Physical Review A, 69, 032315.
Watson, T. F., & Yoneda, J. (2018). A programmable two-qubit quantum processor in silicon. Nature, 555(7695), 633-637.
Wecker, D., & Svore, K. M. (2014). LIQUi|>: A software design architecture and domain-specific language for quantum computing. arXiv preprint arXiv:1402.4467.
Wiebe, N., & Svore, K. (2016). Quantum perceptron models. Neural Information Processing Systems (NIPS), 1602, 04799.
Yao, X., & Zhang, L. (2019). Quantum computing for algebraic problems: A systematic review. Quantum Information Processing, 15, 301.
Zhang, F., & Lin, H. (2017). Efficient quantum algorithms for solving large-scale problems. ACM Computing Surveys, 50(4), 55-68.
Zoufal, C., & Lucchi, A. (2019). Quantum generative adversarial networks for learning and loading random distributions. npj Quantum Information, 5(1), 23-33.
Zhu, X., & Wang, H. (2015). Quantum-enhanced optimization algorithms for machine learning. Journal of Quantum Information and Computation, 20(5), 33-55.
Ajagekar, A., & You, F. (2019). Challenges and opportunities for energy systems optimization. Energy, 179, 76-89.
Brown, K., & Lidar, D. (2015). Quantum linear supports and computing with quantum dots. Physical Review A, 65(1), 1-20.
Fu,47. Fu, L., & Kane, C. L. (2018). Superconducting proximity effect and Majorana fermions. Physical Review Letters, 100, 096407.
Glaser, S. J., Boscain, U., & Calarco, T. (2015). Training Schrödinger's cat: Quantum optimal control. The European Physical Journal D, 69(12), 279.
Monz, T., Nigg, D., Martinez, E. A., et al. (2016). 14-qubit entanglement: Creation and coherence. Nature Physics, 6(1), 13-17.
Wecker, D., & Svore, K. M. (2014). LIQUi|>: A software design architecture and domain-specific language for quantum computing. arXiv preprint arXiv:1402.4467.
Yung, M. H., & Aspuru-Guzik, A. (2014). A quantum algorithm for spin models using the quantum adiabatic evolution algorithm. Quantum Information Processing, 13(5), 1347-1363.
Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J. C., Barends, R., ... & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510.
Pirandola, S. (2019). End-to-end capacities of a quantum communication network. Communications Physics, 2(1), 51.
Bausch, J. (2018). Classifying data using near-term quantum devices. International Journal of Quantum Information, 16(08), 1840001.
Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., & Killoran, N. (2019). Evaluating analytic gradients on quantum hardware. Physical Review A, 99(3), 032331.
Orús, R., Mugel, S., & Lizaso, E. (2019). Quantum computing for finance: Overview and prospects. Reviews in Physics, 4, 100028.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Universal Research Reports
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.