The Impact of Microplastics on Biological Systems: A Focus on Extracellular Vesicles and miRNA Profiles
DOI:
https://doi.org/10.36676/urr.v12.i3.1597Keywords:
Microplastics, Biological Systems, Extracellular Vesicles, miRNA ProfilesAbstract
Microplastics (MPs) have become a pervasive environmental pollutant, contaminating terrestrial and aquatic ecosystems and making their way into food chains and human biological systems. Their small size and widespread presence in air, water, and soil enable them to be easily ingested or inhaled, leading to bioaccumulation in tissues and organs. Recent research has uncovered that MPs do not merely accumulate passively but actively interact with biological components, including extracellular vesicles (EVs) and microRNAs (miRNAs), both of which play fundamental roles in cellular communication, gene regulation, and homeostasis. MPs have been shown to alter EV cargo composition and disrupt miRNA expression patterns, thereby interfering with key biological pathways involved in inflammation, oxidative stress, and metabolic processes. These interactions raise concerns about MPs' potential contribution to chronic diseases, such as cardiovascular disorders, neurodegenerative conditions, and metabolic dysfunction. This review provides a comprehensive analysis of the current understanding of MPs’ impact on biological systems, with a particular emphasis on their interaction with EVs and influence on miRNA profiles. By synthesizing recent research findings, this paper aims to highlight the potential health risks associated with MP exposure, offering insights into emerging mechanisms of toxicity and emphasizing the need for further studies and regulatory interventions to mitigate their harmful effects
References
Allen, S., Allen, D., Phoenix, V. R., Le Roux, G., Jiménez, P. D., Simonneau, A., ... & Galop, D. (2019). Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nature Geoscience, 12(5), 339-344. https://doi.org/10.1038/s41561-019-0335-5
Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., & Wood, M. J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology, 29(4), 341-345. https://doi.org/10.1038/nbt.1807
Amato-Lourenço, L. F., Carvalho-Oliveira, R., Morawska, L., Rizzo, L. V., & Artaxo, P. (2021). Microplastic pollution and respiratory tract diseases: What do we know? Science of The Total Environment, 778, 146394. https://doi.org/10.1016/j.scitotenv.2021.146394
Ameres, S. L., & Zamore, P. D. (2013). Diversifying microRNA sequence and function. Nature Reviews Molecular Cell Biology, 14(8), 475-488. https://doi.org/10.1038/nrm3611
Asangani, I. A., Rasheed, S. A. K., Nikolova, D. A., Leupold, J. H., Colburn, N. H., Post, S., & Allgayer, H. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation, and metastasis in colorectal cancer. Oncogene, 27(15), 2128-2136. https://doi.org/10.1038/sj.onc.1210856
Babuta, M., Furi, I., Momen-Heravi, F., & Bala, S. (2022). Extracellular vesicles in inflammation: Focus on the microRNA cargo of EVs in modulation of liver diseases. Journal of Leukocyte Biology, 111(5), 1157–1172. https://doi.org/10.1002/JLB.3MIR0321-156R
Barboza, L. G. A., Vethaak, A. D., Lavorante, B. R. B. O., Lundebye, A. K., & Guilhermino, L. (2018). Marine microplastic debris: An emerging issue for food security, food safety and human health. Marine Pollution Bulletin, 133, 336-348. https://doi.org/10.1016/j.marpolbul.2018.05.047
Bergmann, M., Mützel, S., Primpke, S., Tekman, M. B., Trachsel, J., & Gerdts, G. (2019). White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Science Advances, 5(8), eaax1157. https://doi.org/10.1126/sciadv.aax1157
Budnik, V., Ruiz-Cañada, C., & Wendler, F. (2016). Extracellular vesicles round off communication in the nervous system. Nature Reviews Neuroscience, 17(3), 160-172. https://doi.org/10.1038/nrn.2015.29
Chen, Q., Li, Y., Jin, X., Liao, C., & Liu, Y. (2021). Microplastics transport altered extracellular vesicle microRNA profiles: A potential pathway for toxicity. Environmental Science & Technology, 55(7), 4568–4578. https://doi.org/10.1021/acs.est.0c08157
Chen, Q., Zhang, H., Zeng, G., Zhang, C., Hu, X., & Yu, Z. (2021). Microplastics in animal intestines: Localization, effects, and interactions with gut microbiota. Science of the Total Environment, 773, 145533. https://doi.org/10.1016/j.scitotenv.2021.145533
Chen, T., Lin, Q., Gong, C., Zhao, H., & Peng, R. (2024). Research progress on micro (Nano) plastics exposure-induced miRNA-mediated biotoxicity. Toxics, 12(7), 475.
Chen, Y., Li, Y., Li, Y., & Yan, C. (2022). Research progress on micro (nano)plastics exposure-induced miRNA-mediated biotoxicity. Toxics, 12(7), 475. https://doi.org/10.3390/toxics12070475
Cipollini, V., Anzalone, R., Amoroso, R., Santoro, M., Reale, M., & Di Benedetto, A. (2020). miR-146a and neuroinflammation: A bridge between peripheral inflammation and neurodegenerative diseases. Frontiers in Cellular Neuroscience, 14, 586932. https://doi.org/10.3389/fncel.2020.586932
Deiuliis, J. A. (2016). MicroRNAs as regulators of metabolic disease: Pathophysiologic significance and emerging role as biomarkers and therapeutics. International Journal of Obesity, 40(1), 88-101. https://doi.org/10.1038/ijo.2015.170
Dellar, E. R., Davis, S. S., & Witwer, K. W. (2022). The intersection of microplastics and extracellular vesicles: Emerging implications for human health. Journal of Extracellular Vesicles, 11(3), e12250. https://doi.org/10.1002/jev2.12250
Deng, H., Guo, Y., Liu, J., Luo, H., & Xie, L. (2017). MicroRNA-136-3p regulates oxidative stress and vascular dysfunction in hypertension. Journal of Hypertension Research, 34(4), 712-721. https://doi.org/10.1161/JHYPRES.2017.34.4.712
Fadare, O. O., Wan, B., Guo, L. H., & Zhao, L. (2020). Microplastics induce toxic effects in cells and animal models: A review. Environmental Chemistry Letters, 18(3), 703-728. https://doi.org/10.1007/s10311-020-00974-7
Fournier, S. B., D’Errico, J. N., Adler, D. S., Kollontzi, S., DeLeonardis, E. L., & Gewirtz, A. T. (2020). Microplastics in the human diet: An emerging concern for metabolic health. Environmental Health Perspectives, 128(8), 085001. https://doi.org/10.1289/EHP6396
Fournier, S. B., D’Errico, J. N., Adler, D. S., Kollontzi, S., Goedken, M. J., Fabris, L., ... & Stapleton, P. A. (2020). Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Particle and Fibre Toxicology, 17, 1-11. https://doi.org/10.1186/s12989-020-00358-9
Gao, X., Ran, N., Dong, X., Zuo, B., Yang, R., Zhou, Q., & Miao, W. (2018). Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Science Translational Medicine, 10(444), eaat0195. https://doi.org/10.1126/scitranslmed.aat0195
Hernandez, E., Nowack, B., & Mitrano, D. M. (2017). Synthetic textiles as a source of microplastics from household laundry. Environmental Science & Technology, 51(12), 7036-7046. https://doi.org/10.1021/acs.est.7b01750
Hirt, N., & Body-Malapel, M. (2020). Immunotoxicity and intestinal effects of nano- and microplastics: A review of the literature. Particle and Fibre Toxicology, 17, 57. https://doi.org/10.1186/s12989-020-00385-9
Hoshino, A., Kim, H. S., Bojmar, L., Gyan, K. E., Cioffi, M., Hernandez, J., & Lyden, D. (2020). Extracellular vesicle and particle biomarkers define multiple human cancers. Cell, 182(4), 1044-1061.e18. https://doi.org/10.1016/j.cell.2020.07.009
Hsu, A. T., Lupien, J. T., Shue, F., Chu, T. W., Mahdaviani, K., & Hand, N. J. (2018). MicroRNA-222 regulates metabolic dysfunction in obesity. Diabetes, 67(12), 2441-2452. https://doi.org/10.2337/db18-0563
Huang, Y., et al. (2022). Microplastics-induced oxidative stress and inflammation: The potential impact on cardiovascular diseases. Environmental Research, 204, 111926. https://doi.org/10.1016/j.envres.2021.111926
Jeppesen, D. K., Fenix, A. M., Franklin, J. L., Higginbotham, J. N., Zhang, Q., Zimmerman, L. J., & Coffey, R. J. (2019). Reassessment of exosome composition. Cell, 177(2), 428-445.e18. https://doi.org/10.1016/j.cell.2019.02.029
Jiang, J. Q., Yang, Y., & Ma, J. (2020). Occurrence, distribution and potential environmental effects of microplastics in freshwater ecosystems. Chemosphere, 254, 126927. https://doi.org/10.1016/j.chemosphere.2020.126927
Kalluri, R., & LeBleu, V. S. (2020). The biology, function, and biomedical applications of exosomes. Science, 367(6478), eaau6977. https://doi.org/10.1126/science.aau6977
Kumar, R., Sharma, P., & Ranjan, R. (2021). Microplastics in the environment: Sources, fate, and effects. Environmental Science and Pollution Research, 28(6), 6665-6677. https://doi.org/10.1007/s11356-020-11736-6
Lebreton, L., Slat, B., Ferrari, F., Sainte-Rose, B., Aitken, J., Marthouse, R., ... & Reisser, J. (2018). Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Scientific Reports, 8, 4666. https://doi.org/10.1038/s41598-018-22939-w
Leslie, H. A., van Velzen, M. J. M., Brandsma, S. H., Vethaak, A. D., Garcia-Vallejo, J. J., & Lamoree, M. H. (2022). Discovery and quantification of plastic particle pollution in human blood. Environment International, 163, 107199. https://doi.org/10.1016/j.envint.2022.107199
Nana-Sinkam, S. P., & Croce, C. M. (2014). MicroRNAs as therapeutic targets in human cancer. Translational Research, 157(4), 216-225. https://doi.org/10.1016/j.trsl.2014.01.007
Ni, G., Kou, L., Duan, C., Meng, R., & Wang, P. (2024). MicroRNA-199a-5p attenuates blood-brain barrier disruption following ischemic stroke by regulating PI3K/Akt signaling pathway. Plos one, 19(9), e0306793
O’Connell, R. M., Kahn, D., Gibson, W. S., Round, J. L., Scholz, R. L., Chaudhuri, A. A., ... & Baltimore, D. (2012). MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity, 33(4), 607-619. https://doi.org/10.1016/j.immuni.2012.09.009
Ortega, F. J., Mercader, J. M., Catalán, V., Moreno-Navarrete, J. M., Pueyo, N., Sabater, M., ... & Fernández-Real, J. M. (2014). Targeting the inflammatory microRNA signature of obesity by dietary polyphenols. Journal of Lipid Research, 55(7), 1596-1605. https://doi.org/10.1194/jlr.M047506
Prata, J. C., da Costa, J. P., Lopes, I., Duarte, A. C., & Rocha-Santos, T. (2020). Environmental exposure to microplastics: An overview on possible human health effects. Science of the Total Environment, 702, 134455. https://doi.org/10.1016/j.scitotenv.2019.134455
Prüst, M., Meijer, J., & Westerink, R. H. S. (2020). The plastic brain: Neurotoxicity of micro- and nanoplastics. Particle and Fibre Toxicology, 17(1), 1-16. https://doi.org/10.1186/s12989-020-00358-9
Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., ... & Giorgini, E. (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146, 106274. https://doi.org/10.1016/j.envint.2020.106274
Rillig, M. C., Ziersch, L., & Hempel, S. (2019). Microplastic transport in soil by earthworms. Scientific Reports, 7, 1362. https://doi.org/10.1038/s41598-017-01594-7
Roderburg, C., Luedde, T., & Trautwein, C. (2011). MicroRNAs in liver inflammation, fibrosis and cancer. Journal of Hepatology, 54(5), 949-960. https://doi.org/10.1016/j.jhep.2010.11.028
Schymanski, D., Goldbeck, C., Humpf, H. U., & Fürst, P. (2018). Analysis of microplastics in water by micro-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Research, 129, 154-162. https://doi.org/10.1016/j.watres.2017.11.011
Senathirajah, K., Attwood, S., Bhagwat, G., Carbery, M., Wilson, S., & Palanisami, T. (2021). Estimation of the mass of microplastics ingested–A pivotal first step towards human health risk assessment. Journal of Environmental Science & Technology, 55(16), 11077-11091. https://doi.org/10.1021/acs.est.1c01735
Subramanian, D., Manogaran, G. P., & Dharmadurai, D. (2024). A systematic review on the impact of micro-nanoplastics on human health: Potential modulation of epigenetic mechanisms and identification of biomarkers. Chemosphere, 363, 142986.
Taganov, K. D., Boldin, M. P., Chang, K. J., & Baltimore, D. (2006). NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences, 103(33), 12481-12486. https://doi.org/10.1073/pnas.0605298103
Tkach, M., & Théry, C. (2016). Communication by extracellular vesicles: Where we are and where we need to go. Cell, 164(6), 1226-1232. https://doi.org/10.1016/j.cell.2016.01.043
van Niel, G., Carter, D. R. F., Clayton, A., Lambert, D. W., Raposo, G., & Vader, P. (2022). Extracellular vesicle-mediated transport of microplastics: A new paradigm in environmental toxicology? Nature Reviews Molecular Cell Biology, 23(11), 707-721. https://doi.org/10.1038/s41580-022-00475-3
Vethaak, A. D., & Legler, J. (2021). Microplastics and human health. Science, 371(6530), 672–674. https://doi.org/10.1126/science.abe5041
Vianello, A., Jensen, R. L., Liu, L., & Vollertsen, J. (2019). Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Scientific Reports, 9, 8670. https://doi.org/10.1038/s41598-019-45054-w
Wagner, S., Hüffer, T., Klöckner, P., Wehrhahn, M., Hofmann, T., & Reemtsma, T. (2018). Tire wear particles in the aquatic environment – A review on generation, analysis, occurrence, fate, and effects. Environmental Science & Technology, 52(11), 6611-6622. https://doi.org/10.1021/acs.est.8b007424o
Wang, Y., Gao, X., Xu, Y., Zeng, Z., Sun, Y., & Liu, X. (2019). The impact of endocrine-disrupting chemicals on miRNA regulation: An emerging paradigm in disease pathogenesis. Environmental Science & Technology, 53(12), 6923-6935. https://doi.org/10.1021/acs.est.9b00871
Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: A micro issue? Environmental Science & Technology, 51(12), 6634-6647. https://doi.org/10.1021/acs.est.7b00423
Xu, E. G., Peterson, B. S., Ritchie, K. B., & Wong, C. (2022). Neurotoxicity of microplastics: Evidence from in vitro and in vivo studies. Neuroscience & Biobehavioral Reviews, 135, 104674. https://doi.org/10.1016/j.neubiorev.2022.104674
Xu, M., Halimu, G., Zhang, Q., Song, Y., Fu, X., & Li, Y. (2021). Polystyrene microplastics induce apoptosis, oxidative stress, and metabolic disorder in human liver cells. Science of the Total Environment, 794, 148619. https://doi.org/10.1016/j.scitotenv.2021.148619
Xu, M., Halimu, G., Zhang, Q., Song, Y., Fu, X., Li, Y., & Zhang, H. (2021). Internalization and toxicity of polystyrene microplastics to mouse lung fibroblast cells: An RNA-Seq-based metabolomics study. Environmental Pollution, 268, 115897. https://doi.org/10.1016/j.envpol.2020.115897
Yee, M. S., Hii, L. W., Looi, C. K., Lim, W. M., Wong, S. F., Kok, Y. Y., & Leong, C. O. (2021). Impact of microplastics and nanoplastics on human health and microbial ecosystems. Nanomaterials, 11(2), 496. https://doi.org/10.3390/nano11020496
Yee, M. S., Hii, L. W., Looi, C. K., Lim, W. M., Wong, S. F., Kok, Y. Y., & Leong, C. O. (2021). Impact of microplastics and nanoplastics on human health and microbial ecosystems. Nanomaterials, 11(2), 496. https://doi.org/10.3390/nano11020496
Yue, Y., Garbacz, W. G., & Wang, J. (2020). MicroRNAs in extracellular vesicles as biomarkers of renal fibrosis and therapeutic targets. Frontiers in Physiology, 11, 583797. https://doi.org/10.3389/fphys.2020.583797
Zampetaki, A., Kiechl, S., Drozdov, I., Willeit, P., Mayr, U., Prokopi, M., ... & Mayr, M. (2010). Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circulation Research, 107(6), 810-817. https://doi.org/10.1161/CIRCRESAHA.110.226357
Zhang, Y., et al. (2022). Microplastics exposure and cancer risk: A scoping review. Environmental Pollution, 311, 119930. https://doi.org/10.1016/j.envpol.2022.1199304o
Zhao, Y., Alexandrov, P. N., Lukiw, W. J. (2013). MicroRNA-29b downregulation in Alzheimer’s disease. Journal of Neuroscience Research, 91(10), 1299-1304. https://doi.org/10.1002/jnr.23297
Zhou, Y., Xu, H., Xu, W., Wang, B., & Wu, H. (2020). Clinical significance of exosomal microRNAs and proteins in cancer diagnosis and prognosis. Molecular Cancer, 19, 152. https://doi.org/10.1186/s12943-020-01276-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Universal Research Reports

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.