Synthesis and photo luminescent properties of Dy3+ doped BaZrO3 Nanophosphors
Keywords:
Nanophosphor, Combustion, PhotoluminescentAbstract
Dy3+ doped BaZrO3 nanophosphors have been successfully synthesized via urea assisted solution combustion process. X-ray diffraction (XRD) and scanning electron microscopy (SEM)) were used to study the structural properties of Dy3+ doped BaZrO3 nanophosphor. The XRD showd that Ba1-xDyxZrO3 nanophosphors crystallize in single cubic pervoskite structure having space group P23 at 1200°C. SEM studies revealed cubical shaped particles having high agglomeration phenomenon with size distribution in nano range. Photoluminescent properties were studied by measuring excitation and emission spectra with decay curves of Ba1-xDyxZrO3 nanophosphors. The two main emission bands in the 470- 490nm (blue region) centered at 482 nm and 560-580 nm (yellow region) centered at 575 nm corresponding to transitions of the Dy3+ ions from well-defined 4F9/2energy states were observed. Luminescence concentration quenching could be observed when the doping concentration of Dysprosium ions was more than 3 mol%. Dy3+ doped BaZrO3 nanophosphors could be potential optical material owing to their white light luminescence.
References
R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stover, J. Am Ceram. Soc., 3 (200) 2023.
A. Erb, E. Walker, R. Flukiger, Phys. C, 245 ((1995) 245.
Z. Chen, S. Duncan, K.K. Chawla, M. Koopman, G.M. Janowski, Mater. Charact., 48 (2002) 305.
H.G. Bohn and T. Schober, J. Am Ceram. Soc., 83 (2000)768.
M. Viviani, M.T. Buscaglia, V. Buscagalia, M. Leoni, P. Nanni, J. Eur. Ceram. Soc., 21 (2001) 1981.
K. Katahira, Y. Kohchi, T. Shiramura, H. Iwahara, Solid State Ionics, 138 (2001) 91.
H. Padma Kumar, C.V. Kumar, C.N. Geirge, S. Soloon, R. Jose, J.K. Thomas, J. Koshy, J. Alloys Compds., 458 (20008) 528.
S. Parida, S.K. Rout, L.S. Cavalcante, E. Sinha, M.S. Li, V. Subramanian, N. Gupta, V.R. Gupta, J.A. Varela, E. Longo, Ceram. Inter., 38 (2012) 2129.
M. Enhessari, S. Khanahmadzadeh, K. Ozaee, J. Iran. Chem. Res.,3 (2011) 11.
R. Borja-Urby, L.A. Diaz-Torres, P. Salas, C.Angeles-Chavez, O. Meza, Mater. Sci. Engg. B, 176 (2011) 1388.
S. Ekambaram and K.C. Patil, J. Alloys Compds., 448 (1997) 7.
Sheetal Lohra, V. B. Taxak, Avni Khatkar, Sonika Singh, S.P. Khatkar, Opt. Quant. Electron., 46 (2014) 1499.
X.Q. Zeng, G.Y. Hong, H.P. You, X.Y. Chin, J. Lumin. 22 (2001) 58–63.
B. Tian, B. Chen, Y. Tian, J. Sun, X. Li, J. Zhang, H. Zhang, L. Cheng, R. Hua, J. Chem. Phys. Solids, 73 (2012)1314.
G.S.R. Raju, J.Y. Park, H.C. Jung, B.K. Moon, J.H. Jeong, J.H. Kim, Curr. Appl. Phys. 9 (2009) e92.
D. Gao, Y. Li, X. Lai, Y. Wei, J. Bi, Y. Li, M. Liu, Mater. Chem. Phys., 126 (2011)391.
C.R. Kesavulu, and C.K. Jayasankar, Mater. Chem. Phys., 130 (2011)1078.
C.H. Liang, L.G. Teoh, K.T. Liu, Y.S. Chang, J. Alloys Compds., 517 (2012) 9.
S.D. Han, S.P. Khatkar, V.B. Taxak, G. Sharma, D. Kumar, Mater. Sci. Eng. B, 129 (2006)126.
L.A. Diaz-Torres, E.D.L. Rosa, P. Salas, V.H. Romero, A. Angeles-Chavez, J. Solid State Chem., 181 (2008) 75.